"vscode:/vscode.git/clone" did not exist on "8e529c85599e98a672765b71d1362a401eb5d239"
scheduling_karras_ve.py 5.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin


class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
    """
    Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2].
    Use Algorithm 2 and the VE column of Table 1 from [1] for reference.

    [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364
    [2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." https://arxiv.org/abs/2011.13456
    """

    @register_to_config
    def __init__(
        self,
        sigma_min=0.02,
        sigma_max=100,
        s_noise=1.007,
        s_churn=80,
        s_min=0.05,
        s_max=50,
        tensor_format="pt",
    ):
        """
        For more details on the parameters, see the original paper's Appendix E.:
        "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364.
        The grid search values used to find the optimal {s_noise, s_churn, s_min, s_max} for a specific model
        are described in Table 5 of the paper.

        Args:
            sigma_min (`float`): minimum noise magnitude
            sigma_max (`float`): maximum noise magnitude
            s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
                A reasonable range is [1.000, 1.011].
            s_churn (`float`): the parameter controlling the overall amount of stochasticity.
                A reasonable range is [0, 100].
            s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
                A reasonable range is [0, 10].
            s_max (`float`): the end value of the sigma range where we add noise.
                A reasonable range is [0.2, 80].
        """
        # setable values
        self.num_inference_steps = None
        self.timesteps = None
        self.schedule = None  # sigma(t_i)

        self.tensor_format = tensor_format
        self.set_format(tensor_format=tensor_format)

    def set_timesteps(self, num_inference_steps):
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
        self.schedule = [
            (self.sigma_max * (self.sigma_min**2 / self.sigma_max**2) ** (i / (num_inference_steps - 1)))
            for i in self.timesteps
        ]
        self.schedule = np.array(self.schedule, dtype=np.float32)

        self.set_format(tensor_format=self.tensor_format)

    def add_noise_to_input(self, sample, sigma, generator=None):
        """
        Explicit Langevin-like "churn" step of adding noise to the sample according to
        a factor gamma_i ≥ 0 to reach a higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
        """
        if self.s_min <= sigma <= self.s_max:
            gamma = min(self.s_churn / self.num_inference_steps, 2**0.5 - 1)
        else:
            gamma = 0

        # sample eps ~ N(0, S_noise^2 * I)
        eps = self.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
        sigma_hat = sigma + gamma * sigma
        sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)

        return sample_hat, sigma_hat

    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
    ):
        pred_original_sample = sample_hat + sigma_hat * model_output
        derivative = (sample_hat - pred_original_sample) / sigma_hat
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative

        return {"prev_sample": sample_prev, "derivative": derivative}

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: Union[torch.FloatTensor, np.ndarray],
        sample_prev: Union[torch.FloatTensor, np.ndarray],
        derivative: Union[torch.FloatTensor, np.ndarray],
    ):
        pred_original_sample = sample_prev + sigma_prev * model_output
        derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
        return {"prev_sample": sample_prev, "derivative": derivative_corr}

    def add_noise(self, original_samples, noise, timesteps):
        raise NotImplementedError()