context_parallel.py 12.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from dataclasses import dataclass
from typing import Dict, List, Type, Union

import torch
import torch.distributed._functional_collectives as funcol

from ..models._modeling_parallel import (
    ContextParallelConfig,
    ContextParallelInput,
    ContextParallelModelPlan,
    ContextParallelOutput,
)
from ..utils import get_logger
from ..utils.torch_utils import unwrap_module
from .hooks import HookRegistry, ModelHook


logger = get_logger(__name__)  # pylint: disable=invalid-name

_CONTEXT_PARALLEL_INPUT_HOOK_TEMPLATE = "cp_input---{}"
_CONTEXT_PARALLEL_OUTPUT_HOOK_TEMPLATE = "cp_output---{}"


# TODO(aryan): consolidate with ._helpers.TransformerBlockMetadata
@dataclass
class ModuleForwardMetadata:
    cached_parameter_indices: Dict[str, int] = None
    _cls: Type = None

    def _get_parameter_from_args_kwargs(self, identifier: str, args=(), kwargs=None):
        kwargs = kwargs or {}

        if identifier in kwargs:
            return kwargs[identifier], True, None

        if self.cached_parameter_indices is not None:
            index = self.cached_parameter_indices.get(identifier, None)
            if index is None:
                raise ValueError(f"Parameter '{identifier}' not found in cached indices.")
            return args[index], False, index

        if self._cls is None:
            raise ValueError("Model class is not set for metadata.")

        parameters = list(inspect.signature(self._cls.forward).parameters.keys())
        parameters = parameters[1:]  # skip `self`
        self.cached_parameter_indices = {param: i for i, param in enumerate(parameters)}

        if identifier not in self.cached_parameter_indices:
            raise ValueError(f"Parameter '{identifier}' not found in function signature but was requested.")

        index = self.cached_parameter_indices[identifier]

        if index >= len(args):
            raise ValueError(f"Expected {index} arguments but got {len(args)}.")

        return args[index], False, index


def apply_context_parallel(
    module: torch.nn.Module,
    parallel_config: ContextParallelConfig,
    plan: Dict[str, ContextParallelModelPlan],
) -> None:
    """Apply context parallel on a model."""
    logger.debug(f"Applying context parallel with CP mesh: {parallel_config._mesh} and plan: {plan}")

    for module_id, cp_model_plan in plan.items():
        submodule = _get_submodule_by_name(module, module_id)
        if not isinstance(submodule, list):
            submodule = [submodule]

        logger.debug(f"Applying ContextParallelHook to {module_id=} identifying a total of {len(submodule)} modules")

        for m in submodule:
            if isinstance(cp_model_plan, dict):
                hook = ContextParallelSplitHook(cp_model_plan, parallel_config)
                hook_name = _CONTEXT_PARALLEL_INPUT_HOOK_TEMPLATE.format(module_id)
            elif isinstance(cp_model_plan, (ContextParallelOutput, list, tuple)):
                if isinstance(cp_model_plan, ContextParallelOutput):
                    cp_model_plan = [cp_model_plan]
                if not all(isinstance(x, ContextParallelOutput) for x in cp_model_plan):
                    raise ValueError(f"Expected all elements of cp_model_plan to be CPOutput, but got {cp_model_plan}")
                hook = ContextParallelGatherHook(cp_model_plan, parallel_config)
                hook_name = _CONTEXT_PARALLEL_OUTPUT_HOOK_TEMPLATE.format(module_id)
            else:
                raise ValueError(f"Unsupported context parallel model plan type: {type(cp_model_plan)}")
            registry = HookRegistry.check_if_exists_or_initialize(m)
            registry.register_hook(hook, hook_name)


def remove_context_parallel(module: torch.nn.Module, plan: Dict[str, ContextParallelModelPlan]) -> None:
    for module_id, cp_model_plan in plan.items():
        submodule = _get_submodule_by_name(module, module_id)
        if not isinstance(submodule, list):
            submodule = [submodule]

        for m in submodule:
            registry = HookRegistry.check_if_exists_or_initialize(m)
            if isinstance(cp_model_plan, dict):
                hook_name = _CONTEXT_PARALLEL_INPUT_HOOK_TEMPLATE.format(module_id)
            elif isinstance(cp_model_plan, (ContextParallelOutput, list, tuple)):
                hook_name = _CONTEXT_PARALLEL_OUTPUT_HOOK_TEMPLATE.format(module_id)
            else:
                raise ValueError(f"Unsupported context parallel model plan type: {type(cp_model_plan)}")
            registry.remove_hook(hook_name)


class ContextParallelSplitHook(ModelHook):
    def __init__(self, metadata: ContextParallelModelPlan, parallel_config: ContextParallelConfig) -> None:
        super().__init__()
        self.metadata = metadata
        self.parallel_config = parallel_config
        self.module_forward_metadata = None

    def initialize_hook(self, module):
        cls = unwrap_module(module).__class__
        self.module_forward_metadata = ModuleForwardMetadata(_cls=cls)
        return module

    def pre_forward(self, module, *args, **kwargs):
        args_list = list(args)

        for name, cpm in self.metadata.items():
            if isinstance(cpm, ContextParallelInput) and cpm.split_output:
                continue

            # Maybe the parameter was passed as a keyword argument
            input_val, is_kwarg, index = self.module_forward_metadata._get_parameter_from_args_kwargs(
                name, args_list, kwargs
            )

            if input_val is None:
                continue

            # The input_val may be a tensor or list/tuple of tensors. In certain cases, user may specify to shard
            # the output instead of input for a particular layer by setting split_output=True
            if isinstance(input_val, torch.Tensor):
                input_val = self._prepare_cp_input(input_val, cpm)
            elif isinstance(input_val, (list, tuple)):
                if len(input_val) != len(cpm):
                    raise ValueError(
                        f"Expected input model plan to have {len(input_val)} elements, but got {len(cpm)}."
                    )
                sharded_input_val = []
                for i, x in enumerate(input_val):
                    if torch.is_tensor(x) and not cpm[i].split_output:
                        x = self._prepare_cp_input(x, cpm[i])
                    sharded_input_val.append(x)
                input_val = sharded_input_val
            else:
                raise ValueError(f"Unsupported input type: {type(input_val)}")

            if is_kwarg:
                kwargs[name] = input_val
            elif index is not None and index < len(args_list):
                args_list[index] = input_val
            else:
                raise ValueError(
                    f"An unexpected error occurred while processing the input '{name}'. Please open an "
                    f"issue at https://github.com/huggingface/diffusers/issues and provide a minimal reproducible "
                    f"example along with the full stack trace."
                )

        return tuple(args_list), kwargs

    def post_forward(self, module, output):
        is_tensor = isinstance(output, torch.Tensor)
        is_tensor_list = isinstance(output, (list, tuple)) and all(isinstance(x, torch.Tensor) for x in output)

        if not is_tensor and not is_tensor_list:
            raise ValueError(f"Expected output to be a tensor or a list/tuple of tensors, but got {type(output)}.")

        output = [output] if is_tensor else list(output)
        for index, cpm in self.metadata.items():
            if not isinstance(cpm, ContextParallelInput) or not cpm.split_output:
                continue
            if index >= len(output):
                raise ValueError(f"Index {index} out of bounds for output of length {len(output)}.")
            current_output = output[index]
            current_output = self._prepare_cp_input(current_output, cpm)
            output[index] = current_output

        return output[0] if is_tensor else tuple(output)

    def _prepare_cp_input(self, x: torch.Tensor, cp_input: ContextParallelInput) -> torch.Tensor:
        if cp_input.expected_dims is not None and x.dim() != cp_input.expected_dims:
            raise ValueError(
                f"Expected input tensor to have {cp_input.expected_dims} dimensions, but got {x.dim()} dimensions."
            )
        return EquipartitionSharder.shard(x, cp_input.split_dim, self.parallel_config._flattened_mesh)


class ContextParallelGatherHook(ModelHook):
    def __init__(self, metadata: ContextParallelModelPlan, parallel_config: ContextParallelConfig) -> None:
        super().__init__()
        self.metadata = metadata
        self.parallel_config = parallel_config

    def post_forward(self, module, output):
        is_tensor = isinstance(output, torch.Tensor)

        if is_tensor:
            output = [output]
        elif not (isinstance(output, (list, tuple)) and all(isinstance(x, torch.Tensor) for x in output)):
            raise ValueError(f"Expected output to be a tensor or a list/tuple of tensors, but got {type(output)}.")

        output = list(output)

        if len(output) != len(self.metadata):
            raise ValueError(f"Expected output to have {len(self.metadata)} elements, but got {len(output)}.")

        for i, cpm in enumerate(self.metadata):
            if cpm is None:
                continue
            output[i] = EquipartitionSharder.unshard(output[i], cpm.gather_dim, self.parallel_config._flattened_mesh)

        return output[0] if is_tensor else tuple(output)


class AllGatherFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, tensor, dim, group):
        ctx.dim = dim
        ctx.group = group
        ctx.world_size = torch.distributed.get_world_size(group)
        ctx.rank = torch.distributed.get_rank(group)
        return funcol.all_gather_tensor(tensor, dim, group=group)

    @staticmethod
    def backward(ctx, grad_output):
        grad_chunks = torch.chunk(grad_output, ctx.world_size, dim=ctx.dim)
        return grad_chunks[ctx.rank], None, None


class EquipartitionSharder:
    @classmethod
    def shard(cls, tensor: torch.Tensor, dim: int, mesh: torch.distributed.device_mesh.DeviceMesh) -> torch.Tensor:
        # NOTE: the following assertion does not have to be true in general. We simply enforce it for now
        # because the alternate case has not yet been tested/required for any model.
        assert tensor.size()[dim] % mesh.size() == 0, (
            "Tensor size along dimension to be sharded must be divisible by mesh size"
        )

        # The following is not fullgraph compatible with Dynamo (fails in DeviceMesh.get_rank)
        # return tensor.chunk(mesh.size(), dim=dim)[mesh.get_rank()]

        return tensor.chunk(mesh.size(), dim=dim)[torch.distributed.get_rank(mesh.get_group())]

    @classmethod
    def unshard(cls, tensor: torch.Tensor, dim: int, mesh: torch.distributed.device_mesh.DeviceMesh) -> torch.Tensor:
        tensor = tensor.contiguous()
        tensor = AllGatherFunction.apply(tensor, dim, mesh.get_group())
        return tensor


def _get_submodule_by_name(model: torch.nn.Module, name: str) -> Union[torch.nn.Module, List[torch.nn.Module]]:
    if name.count("*") > 1:
        raise ValueError("Wildcard '*' can only be used once in the name")
    return _find_submodule_by_name(model, name)


def _find_submodule_by_name(model: torch.nn.Module, name: str) -> Union[torch.nn.Module, List[torch.nn.Module]]:
    if name == "":
        return model
    first_atom, remaining_name = name.split(".", 1) if "." in name else (name, "")
    if first_atom == "*":
        if not isinstance(model, torch.nn.ModuleList):
            raise ValueError("Wildcard '*' can only be used with ModuleList")
        submodules = []
        for submodule in model:
            subsubmodules = _find_submodule_by_name(submodule, remaining_name)
            if not isinstance(subsubmodules, list):
                subsubmodules = [subsubmodules]
            submodules.extend(subsubmodules)
        return submodules
    else:
        if hasattr(model, first_atom):
            submodule = getattr(model, first_atom)
            return _find_submodule_by_name(submodule, remaining_name)
        else:
            raise ValueError(f"'{first_atom}' is not a submodule of '{model.__class__.__name__}'")