unet_2d_blocks_flax.py 13.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
# limitations under the License.
14
15
16
17

import flax.linen as nn
import jax.numpy as jnp

Will Berman's avatar
Will Berman committed
18
from .attention_flax import FlaxTransformer2DModel
19
20
21
22
from .resnet_flax import FlaxDownsample2D, FlaxResnetBlock2D, FlaxUpsample2D


class FlaxCrossAttnDownBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    r"""
    Cross Attention 2D Downsizing block - original architecture from Unet transformers:
    https://arxiv.org/abs/2103.06104

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        attn_num_head_channels (:obj:`int`, *optional*, defaults to 1):
            Number of attention heads of each spatial transformer block
        add_downsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add downsampling layer before each final output
40
41
        use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
            enable memory efficient attention https://arxiv.org/abs/2112.05682
Younes Belkada's avatar
Younes Belkada committed
42
43
44
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
45
46
47
48
49
50
    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    attn_num_head_channels: int = 1
    add_downsample: bool = True
51
52
    use_linear_projection: bool = False
    only_cross_attention: bool = False
53
    use_memory_efficient_attention: bool = False
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []
        attentions = []

        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=in_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

Will Berman's avatar
Will Berman committed
71
            attn_block = FlaxTransformer2DModel(
72
73
74
75
                in_channels=self.out_channels,
                n_heads=self.attn_num_head_channels,
                d_head=self.out_channels // self.attn_num_head_channels,
                depth=1,
76
77
                use_linear_projection=self.use_linear_projection,
                only_cross_attention=self.only_cross_attention,
78
                use_memory_efficient_attention=self.use_memory_efficient_attention,
79
80
81
82
83
84
85
86
                dtype=self.dtype,
            )
            attentions.append(attn_block)

        self.resnets = resnets
        self.attentions = attentions

        if self.add_downsample:
87
            self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
88
89
90
91
92
93
94
95
96
97

    def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
            hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
            output_states += (hidden_states,)

        if self.add_downsample:
98
            hidden_states = self.downsamplers_0(hidden_states)
99
100
101
102
103
104
            output_states += (hidden_states,)

        return hidden_states, output_states


class FlaxDownBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    r"""
    Flax 2D downsizing block

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        add_downsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add downsampling layer before each final output
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    in_channels: int
    out_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    add_downsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []

        for i in range(self.num_layers):
            in_channels = self.in_channels if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=in_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)
        self.resnets = resnets

        if self.add_downsample:
145
            self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype)
146
147
148
149
150
151
152
153
154

    def __call__(self, hidden_states, temb, deterministic=True):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
            output_states += (hidden_states,)

        if self.add_downsample:
155
            hidden_states = self.downsamplers_0(hidden_states)
156
157
158
159
160
161
            output_states += (hidden_states,)

        return hidden_states, output_states


class FlaxCrossAttnUpBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    r"""
    Cross Attention 2D Upsampling block - original architecture from Unet transformers:
    https://arxiv.org/abs/2103.06104

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        attn_num_head_channels (:obj:`int`, *optional*, defaults to 1):
            Number of attention heads of each spatial transformer block
        add_upsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add upsampling layer before each final output
179
180
        use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
            enable memory efficient attention https://arxiv.org/abs/2112.05682
Younes Belkada's avatar
Younes Belkada committed
181
182
183
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
184
185
186
187
188
189
190
    in_channels: int
    out_channels: int
    prev_output_channel: int
    dropout: float = 0.0
    num_layers: int = 1
    attn_num_head_channels: int = 1
    add_upsample: bool = True
191
192
    use_linear_projection: bool = False
    only_cross_attention: bool = False
193
    use_memory_efficient_attention: bool = False
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []
        attentions = []

        for i in range(self.num_layers):
            res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels
            resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=resnet_in_channels + res_skip_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

Will Berman's avatar
Will Berman committed
212
            attn_block = FlaxTransformer2DModel(
213
214
215
216
                in_channels=self.out_channels,
                n_heads=self.attn_num_head_channels,
                d_head=self.out_channels // self.attn_num_head_channels,
                depth=1,
217
218
                use_linear_projection=self.use_linear_projection,
                only_cross_attention=self.only_cross_attention,
219
                use_memory_efficient_attention=self.use_memory_efficient_attention,
220
221
222
223
224
225
226
227
                dtype=self.dtype,
            )
            attentions.append(attn_block)

        self.resnets = resnets
        self.attentions = attentions

        if self.add_upsample:
228
            self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
229
230
231
232
233
234
235
236
237
238
239
240

    def __call__(self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states, deterministic=True):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1)

            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)
            hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)

        if self.add_upsample:
241
            hidden_states = self.upsamplers_0(hidden_states)
242
243
244
245
246

        return hidden_states


class FlaxUpBlock2D(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    r"""
    Flax 2D upsampling block

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        out_channels (:obj:`int`):
            Output channels
        prev_output_channel (:obj:`int`):
            Output channels from the previous block
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        add_downsample (:obj:`bool`, *optional*, defaults to `True`):
            Whether to add downsampling layer before each final output
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    in_channels: int
    out_channels: int
    prev_output_channel: int
    dropout: float = 0.0
    num_layers: int = 1
    add_upsample: bool = True
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        resnets = []

        for i in range(self.num_layers):
            res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels
            resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels

            res_block = FlaxResnetBlock2D(
                in_channels=resnet_in_channels + res_skip_channels,
                out_channels=self.out_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets

        if self.add_upsample:
292
            self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype)
293
294
295
296
297
298
299
300
301
302
303

    def __call__(self, hidden_states, res_hidden_states_tuple, temb, deterministic=True):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1)

            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)

        if self.add_upsample:
304
            hidden_states = self.upsamplers_0(hidden_states)
305
306
307
308
309

        return hidden_states


class FlaxUNetMidBlock2DCrossAttn(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
310
311
312
313
314
315
316
317
318
319
320
321
    r"""
    Cross Attention 2D Mid-level block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104

    Parameters:
        in_channels (:obj:`int`):
            Input channels
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        num_layers (:obj:`int`, *optional*, defaults to 1):
            Number of attention blocks layers
        attn_num_head_channels (:obj:`int`, *optional*, defaults to 1):
            Number of attention heads of each spatial transformer block
322
323
        use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
            enable memory efficient attention https://arxiv.org/abs/2112.05682
Younes Belkada's avatar
Younes Belkada committed
324
325
326
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
327
328
329
330
    in_channels: int
    dropout: float = 0.0
    num_layers: int = 1
    attn_num_head_channels: int = 1
331
    use_linear_projection: bool = False
332
    use_memory_efficient_attention: bool = False
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        # there is always at least one resnet
        resnets = [
            FlaxResnetBlock2D(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
        ]

        attentions = []

        for _ in range(self.num_layers):
Will Berman's avatar
Will Berman committed
349
            attn_block = FlaxTransformer2DModel(
350
351
352
353
                in_channels=self.in_channels,
                n_heads=self.attn_num_head_channels,
                d_head=self.in_channels // self.attn_num_head_channels,
                depth=1,
354
                use_linear_projection=self.use_linear_projection,
355
                use_memory_efficient_attention=self.use_memory_efficient_attention,
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
                dtype=self.dtype,
            )
            attentions.append(attn_block)

            res_block = FlaxResnetBlock2D(
                in_channels=self.in_channels,
                out_channels=self.in_channels,
                dropout_prob=self.dropout,
                dtype=self.dtype,
            )
            resnets.append(res_block)

        self.resnets = resnets
        self.attentions = attentions

    def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True):
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic)
            hidden_states = resnet(hidden_states, temb, deterministic=deterministic)

        return hidden_states