attention_flax.py 17.3 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
import functools
import math

18
import flax.linen as nn
19
import jax
20
21
22
import jax.numpy as jnp


23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def _query_chunk_attention(query, key, value, precision, key_chunk_size: int = 4096):
    """Multi-head dot product attention with a limited number of queries."""
    num_kv, num_heads, k_features = key.shape[-3:]
    v_features = value.shape[-1]
    key_chunk_size = min(key_chunk_size, num_kv)
    query = query / jnp.sqrt(k_features)

    @functools.partial(jax.checkpoint, prevent_cse=False)
    def summarize_chunk(query, key, value):
        attn_weights = jnp.einsum("...qhd,...khd->...qhk", query, key, precision=precision)

        max_score = jnp.max(attn_weights, axis=-1, keepdims=True)
        max_score = jax.lax.stop_gradient(max_score)
        exp_weights = jnp.exp(attn_weights - max_score)

        exp_values = jnp.einsum("...vhf,...qhv->...qhf", value, exp_weights, precision=precision)
        max_score = jnp.einsum("...qhk->...qh", max_score)

        return (exp_values, exp_weights.sum(axis=-1), max_score)

    def chunk_scanner(chunk_idx):
        # julienne key array
        key_chunk = jax.lax.dynamic_slice(
            operand=key,
            start_indices=[0] * (key.ndim - 3) + [chunk_idx, 0, 0],  # [...,k,h,d]
            slice_sizes=list(key.shape[:-3]) + [key_chunk_size, num_heads, k_features],  # [...,k,h,d]
        )

        # julienne value array
        value_chunk = jax.lax.dynamic_slice(
            operand=value,
            start_indices=[0] * (value.ndim - 3) + [chunk_idx, 0, 0],  # [...,v,h,d]
            slice_sizes=list(value.shape[:-3]) + [key_chunk_size, num_heads, v_features],  # [...,v,h,d]
        )

        return summarize_chunk(query, key_chunk, value_chunk)

    chunk_values, chunk_weights, chunk_max = jax.lax.map(f=chunk_scanner, xs=jnp.arange(0, num_kv, key_chunk_size))

    global_max = jnp.max(chunk_max, axis=0, keepdims=True)
    max_diffs = jnp.exp(chunk_max - global_max)

    chunk_values *= jnp.expand_dims(max_diffs, axis=-1)
    chunk_weights *= max_diffs

    all_values = chunk_values.sum(axis=0)
    all_weights = jnp.expand_dims(chunk_weights, -1).sum(axis=0)

    return all_values / all_weights


def jax_memory_efficient_attention(
    query, key, value, precision=jax.lax.Precision.HIGHEST, query_chunk_size: int = 1024, key_chunk_size: int = 4096
):
    r"""
    Flax Memory-efficient multi-head dot product attention. https://arxiv.org/abs/2112.05682v2
    https://github.com/AminRezaei0x443/memory-efficient-attention

    Args:
        query (`jnp.ndarray`): (batch..., query_length, head, query_key_depth_per_head)
        key (`jnp.ndarray`): (batch..., key_value_length, head, query_key_depth_per_head)
        value (`jnp.ndarray`): (batch..., key_value_length, head, value_depth_per_head)
        precision (`jax.lax.Precision`, *optional*, defaults to `jax.lax.Precision.HIGHEST`):
            numerical precision for computation
        query_chunk_size (`int`, *optional*, defaults to 1024):
            chunk size to divide query array value must divide query_length equally without remainder
        key_chunk_size (`int`, *optional*, defaults to 4096):
            chunk size to divide key and value array value must divide key_value_length equally without remainder

    Returns:
        (`jnp.ndarray`) with shape of (batch..., query_length, head, value_depth_per_head)
    """
    num_q, num_heads, q_features = query.shape[-3:]

    def chunk_scanner(chunk_idx, _):
        # julienne query array
        query_chunk = jax.lax.dynamic_slice(
            operand=query,
            start_indices=([0] * (query.ndim - 3)) + [chunk_idx, 0, 0],  # [...,q,h,d]
            slice_sizes=list(query.shape[:-3]) + [min(query_chunk_size, num_q), num_heads, q_features],  # [...,q,h,d]
        )

        return (
            chunk_idx + query_chunk_size,  # unused ignore it
            _query_chunk_attention(
                query=query_chunk, key=key, value=value, precision=precision, key_chunk_size=key_chunk_size
            ),
        )

    _, res = jax.lax.scan(
        f=chunk_scanner, init=0, xs=None, length=math.ceil(num_q / query_chunk_size)  # start counter  # stop counter
    )

    return jnp.concatenate(res, axis=-3)  # fuse the chunked result back


Patrick von Platen's avatar
Patrick von Platen committed
119
class FlaxAttention(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
120
121
122
123
124
125
126
127
128
129
130
131
    r"""
    A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762

    Parameters:
        query_dim (:obj:`int`):
            Input hidden states dimension
        heads (:obj:`int`, *optional*, defaults to 8):
            Number of heads
        dim_head (:obj:`int`, *optional*, defaults to 64):
            Hidden states dimension inside each head
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
132
133
        use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
            enable memory efficient attention https://arxiv.org/abs/2112.05682
Younes Belkada's avatar
Younes Belkada committed
134
135
136
137
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`

    """
138
139
140
141
    query_dim: int
    heads: int = 8
    dim_head: int = 64
    dropout: float = 0.0
142
    use_memory_efficient_attention: bool = False
143
144
145
146
147
148
149
150
151
152
153
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        inner_dim = self.dim_head * self.heads
        self.scale = self.dim_head**-0.5

        # Weights were exported with old names {to_q, to_k, to_v, to_out}
        self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q")
        self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k")
        self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v")

154
        self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0")
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = jnp.transpose(tensor, (0, 2, 1, 3))
        tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = jnp.transpose(tensor, (0, 2, 1, 3))
        tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def __call__(self, hidden_states, context=None, deterministic=True):
        context = hidden_states if context is None else context

        query_proj = self.query(hidden_states)
        key_proj = self.key(context)
        value_proj = self.value(context)

        query_states = self.reshape_heads_to_batch_dim(query_proj)
        key_states = self.reshape_heads_to_batch_dim(key_proj)
        value_states = self.reshape_heads_to_batch_dim(value_proj)

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        if self.use_memory_efficient_attention:
            query_states = query_states.transpose(1, 0, 2)
            key_states = key_states.transpose(1, 0, 2)
            value_states = value_states.transpose(1, 0, 2)

            # this if statement create a chunk size for each layer of the unet
            # the chunk size is equal to the query_length dimension of the deepest layer of the unet

            flatten_latent_dim = query_states.shape[-3]
            if flatten_latent_dim % 64 == 0:
                query_chunk_size = int(flatten_latent_dim / 64)
            elif flatten_latent_dim % 16 == 0:
                query_chunk_size = int(flatten_latent_dim / 16)
            elif flatten_latent_dim % 4 == 0:
                query_chunk_size = int(flatten_latent_dim / 4)
            else:
                query_chunk_size = int(flatten_latent_dim)

            hidden_states = jax_memory_efficient_attention(
                query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4
            )

            hidden_states = hidden_states.transpose(1, 0, 2)
        else:
            # compute attentions
            attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states)
            attention_scores = attention_scores * self.scale
            attention_probs = nn.softmax(attention_scores, axis=2)

            # attend to values
            hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states)
214
215
216
217
218
219
220

        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        hidden_states = self.proj_attn(hidden_states)
        return hidden_states


class FlaxBasicTransformerBlock(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    r"""
    A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in:
    https://arxiv.org/abs/1706.03762


    Parameters:
        dim (:obj:`int`):
            Inner hidden states dimension
        n_heads (:obj:`int`):
            Number of heads
        d_head (:obj:`int`):
            Hidden states dimension inside each head
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
235
236
        only_cross_attention (`bool`, defaults to `False`):
            Whether to only apply cross attention.
Younes Belkada's avatar
Younes Belkada committed
237
238
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
239
240
        use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
            enable memory efficient attention https://arxiv.org/abs/2112.05682
Younes Belkada's avatar
Younes Belkada committed
241
    """
242
243
244
245
    dim: int
    n_heads: int
    d_head: int
    dropout: float = 0.0
246
    only_cross_attention: bool = False
247
    dtype: jnp.dtype = jnp.float32
248
    use_memory_efficient_attention: bool = False
249
250

    def setup(self):
251
        # self attention (or cross_attention if only_cross_attention is True)
252
253
254
        self.attn1 = FlaxAttention(
            self.dim, self.n_heads, self.d_head, self.dropout, self.use_memory_efficient_attention, dtype=self.dtype
        )
255
        # cross attention
256
257
258
        self.attn2 = FlaxAttention(
            self.dim, self.n_heads, self.d_head, self.dropout, self.use_memory_efficient_attention, dtype=self.dtype
        )
259
        self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype)
260
261
262
263
264
265
266
        self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
        self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
        self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)

    def __call__(self, hidden_states, context, deterministic=True):
        # self attention
        residual = hidden_states
267
268
269
270
        if self.only_cross_attention:
            hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic)
        else:
            hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic)
271
272
273
274
        hidden_states = hidden_states + residual

        # cross attention
        residual = hidden_states
275
        hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic)
276
277
278
279
280
281
282
283
284
285
        hidden_states = hidden_states + residual

        # feed forward
        residual = hidden_states
        hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic)
        hidden_states = hidden_states + residual

        return hidden_states


Will Berman's avatar
Will Berman committed
286
class FlaxTransformer2DModel(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    r"""
    A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in:
    https://arxiv.org/pdf/1506.02025.pdf


    Parameters:
        in_channels (:obj:`int`):
            Input number of channels
        n_heads (:obj:`int`):
            Number of heads
        d_head (:obj:`int`):
            Hidden states dimension inside each head
        depth (:obj:`int`, *optional*, defaults to 1):
            Number of transformers block
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
303
304
        use_linear_projection (`bool`, defaults to `False`): tbd
        only_cross_attention (`bool`, defaults to `False`): tbd
Younes Belkada's avatar
Younes Belkada committed
305
306
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
307
308
        use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
            enable memory efficient attention https://arxiv.org/abs/2112.05682
Younes Belkada's avatar
Younes Belkada committed
309
    """
310
311
312
313
314
    in_channels: int
    n_heads: int
    d_head: int
    depth: int = 1
    dropout: float = 0.0
315
316
    use_linear_projection: bool = False
    only_cross_attention: bool = False
317
    dtype: jnp.dtype = jnp.float32
318
    use_memory_efficient_attention: bool = False
319
320
321
322
323

    def setup(self):
        self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5)

        inner_dim = self.n_heads * self.d_head
324
325
326
327
328
329
330
331
332
333
        if self.use_linear_projection:
            self.proj_in = nn.Dense(inner_dim, dtype=self.dtype)
        else:
            self.proj_in = nn.Conv(
                inner_dim,
                kernel_size=(1, 1),
                strides=(1, 1),
                padding="VALID",
                dtype=self.dtype,
            )
334
335

        self.transformer_blocks = [
336
337
338
339
340
341
342
            FlaxBasicTransformerBlock(
                inner_dim,
                self.n_heads,
                self.d_head,
                dropout=self.dropout,
                only_cross_attention=self.only_cross_attention,
                dtype=self.dtype,
343
                use_memory_efficient_attention=self.use_memory_efficient_attention,
344
            )
345
346
347
            for _ in range(self.depth)
        ]

348
349
350
351
352
353
354
355
356
357
        if self.use_linear_projection:
            self.proj_out = nn.Dense(inner_dim, dtype=self.dtype)
        else:
            self.proj_out = nn.Conv(
                inner_dim,
                kernel_size=(1, 1),
                strides=(1, 1),
                padding="VALID",
                dtype=self.dtype,
            )
358
359
360
361
362

    def __call__(self, hidden_states, context, deterministic=True):
        batch, height, width, channels = hidden_states.shape
        residual = hidden_states
        hidden_states = self.norm(hidden_states)
363
364
365
366
367
368
        if self.use_linear_projection:
            hidden_states = hidden_states.reshape(batch, height * width, channels)
            hidden_states = self.proj_in(hidden_states)
        else:
            hidden_states = self.proj_in(hidden_states)
            hidden_states = hidden_states.reshape(batch, height * width, channels)
369
370
371
372

        for transformer_block in self.transformer_blocks:
            hidden_states = transformer_block(hidden_states, context, deterministic=deterministic)

373
374
375
376
377
378
        if self.use_linear_projection:
            hidden_states = self.proj_out(hidden_states)
            hidden_states = hidden_states.reshape(batch, height, width, channels)
        else:
            hidden_states = hidden_states.reshape(batch, height, width, channels)
            hidden_states = self.proj_out(hidden_states)
379
380
381
382
383

        hidden_states = hidden_states + residual
        return hidden_states


384
class FlaxFeedForward(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
385
    r"""
386
387
388
    Flax module that encapsulates two Linear layers separated by a non-linearity. It is the counterpart of PyTorch's
    [`FeedForward`] class, with the following simplifications:
    - The activation function is currently hardcoded to a gated linear unit from:
Younes Belkada's avatar
Younes Belkada committed
389
    https://arxiv.org/abs/2002.05202
390
391
    - `dim_out` is equal to `dim`.
    - The number of hidden dimensions is hardcoded to `dim * 4` in [`FlaxGELU`].
Younes Belkada's avatar
Younes Belkada committed
392
393
394
395
396
397
398
399
400

    Parameters:
        dim (:obj:`int`):
            Inner hidden states dimension
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
401
402
403
404
    dim: int
    dropout: float = 0.0
    dtype: jnp.dtype = jnp.float32

405
406
407
408
409
410
411
412
413
414
415
416
417
    def setup(self):
        # The second linear layer needs to be called
        # net_2 for now to match the index of the Sequential layer
        self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype)
        self.net_2 = nn.Dense(self.dim, dtype=self.dtype)

    def __call__(self, hidden_states, deterministic=True):
        hidden_states = self.net_0(hidden_states)
        hidden_states = self.net_2(hidden_states)
        return hidden_states


class FlaxGEGLU(nn.Module):
Younes Belkada's avatar
Younes Belkada committed
418
419
420
421
422
423
424
425
426
427
428
429
    r"""
    Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from
    https://arxiv.org/abs/2002.05202.

    Parameters:
        dim (:obj:`int`):
            Input hidden states dimension
        dropout (:obj:`float`, *optional*, defaults to 0.0):
            Dropout rate
        dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
            Parameters `dtype`
    """
430
431
432
433
    dim: int
    dropout: float = 0.0
    dtype: jnp.dtype = jnp.float32

434
435
    def setup(self):
        inner_dim = self.dim * 4
436
        self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype)
437
438

    def __call__(self, hidden_states, deterministic=True):
439
        hidden_states = self.proj(hidden_states)
440
        hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2)
441
        return hidden_linear * nn.gelu(hidden_gelu)