"vscode:/vscode.git/clone" did not exist on "8db3ac55a975ecd849dc8a0e8a306eddd4ae0be5"
scheduling_dpmsolver_multistep_flax.py 28 KB
Newer Older
1
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import flax
import jax
import jax.numpy as jnp

from ..configuration_utils import ConfigMixin, register_to_config
25
from .scheduling_utils_flax import (
26
    CommonSchedulerState,
Kashif Rasul's avatar
Kashif Rasul committed
27
    FlaxKarrasDiffusionSchedulers,
28
29
    FlaxSchedulerMixin,
    FlaxSchedulerOutput,
30
    add_noise_common,
31
)
32
33
34
35


@flax.struct.dataclass
class DPMSolverMultistepSchedulerState:
36
37
38
39
40
    common: CommonSchedulerState
    alpha_t: jnp.ndarray
    sigma_t: jnp.ndarray
    lambda_t: jnp.ndarray

41
    # setable values
42
43
    init_noise_sigma: jnp.ndarray
    timesteps: jnp.ndarray
44
45
46
47
    num_inference_steps: Optional[int] = None

    # running values
    model_outputs: Optional[jnp.ndarray] = None
48
49
    lower_order_nums: Optional[jnp.int32] = None
    prev_timestep: Optional[jnp.int32] = None
50
51
52
    cur_sample: Optional[jnp.ndarray] = None

    @classmethod
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    def create(
        cls,
        common: CommonSchedulerState,
        alpha_t: jnp.ndarray,
        sigma_t: jnp.ndarray,
        lambda_t: jnp.ndarray,
        init_noise_sigma: jnp.ndarray,
        timesteps: jnp.ndarray,
    ):
        return cls(
            common=common,
            alpha_t=alpha_t,
            sigma_t=sigma_t,
            lambda_t=lambda_t,
            init_noise_sigma=init_noise_sigma,
            timesteps=timesteps,
        )
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94


@dataclass
class FlaxDPMSolverMultistepSchedulerOutput(FlaxSchedulerOutput):
    state: DPMSolverMultistepSchedulerState


class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin):
    """
    DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with
    the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality
    samples, and it can generate quite good samples even in only 10 steps.

    For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095

    Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We
    recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.

    We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space
    diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic
    thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as
    stable-diffusion).

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
95
96
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        solver_order (`int`, default `2`):
            the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided
            sampling, and `solver_order=3` for unconditional sampling.
112
        prediction_type (`str`, default `epsilon`):
113
114
            indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`,
            or `v-prediction`.
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        thresholding (`bool`, default `False`):
            whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
            For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to
            use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion
            models (such as stable-diffusion).
        dynamic_thresholding_ratio (`float`, default `0.995`):
            the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
            (https://arxiv.org/abs/2205.11487).
        sample_max_value (`float`, default `1.0`):
            the threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++`.
        algorithm_type (`str`, default `dpmsolver++`):
            the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the
            algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in
            https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided
            sampling (e.g. stable-diffusion).
        solver_type (`str`, default `midpoint`):
            the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects
            the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are
            slightly better, so we recommend to use the `midpoint` type.
        lower_order_final (`bool`, default `True`):
            whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically
            find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10.
138
139
140
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
141
142
        dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
            the `dtype` used for params and computation.
143
144
    """

Kashif Rasul's avatar
Kashif Rasul committed
145
    _compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers]
146

147
148
    dtype: jnp.dtype

149
150
151
152
153
154
155
156
157
158
159
160
161
    @property
    def has_state(self):
        return True

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[jnp.ndarray] = None,
        solver_order: int = 2,
162
        prediction_type: str = "epsilon",
163
164
165
166
167
168
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
        lower_order_final: bool = True,
169
        timestep_spacing: str = "linspace",
170
        dtype: jnp.dtype = jnp.float32,
171
    ):
172
173
174
175
176
        self.dtype = dtype

    def create_state(self, common: Optional[CommonSchedulerState] = None) -> DPMSolverMultistepSchedulerState:
        if common is None:
            common = CommonSchedulerState.create(self)
177
178

        # Currently we only support VP-type noise schedule
179
180
181
182
183
184
        alpha_t = jnp.sqrt(common.alphas_cumprod)
        sigma_t = jnp.sqrt(1 - common.alphas_cumprod)
        lambda_t = jnp.log(alpha_t) - jnp.log(sigma_t)

        # settings for DPM-Solver
        if self.config.algorithm_type not in ["dpmsolver", "dpmsolver++"]:
185
            raise NotImplementedError(f"{self.config.algorithm_type} is not implemented for {self.__class__}")
186
        if self.config.solver_type not in ["midpoint", "heun"]:
187
            raise NotImplementedError(f"{self.config.solver_type} is not implemented for {self.__class__}")
188
189

        # standard deviation of the initial noise distribution
190
        init_noise_sigma = jnp.array(1.0, dtype=self.dtype)
191

192
        timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1]
193

194
195
196
197
198
199
200
201
        return DPMSolverMultistepSchedulerState.create(
            common=common,
            alpha_t=alpha_t,
            sigma_t=sigma_t,
            lambda_t=lambda_t,
            init_noise_sigma=init_noise_sigma,
            timesteps=timesteps,
        )
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

    def set_timesteps(
        self, state: DPMSolverMultistepSchedulerState, num_inference_steps: int, shape: Tuple
    ) -> DPMSolverMultistepSchedulerState:
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            state (`DPMSolverMultistepSchedulerState`):
                the `FlaxDPMSolverMultistepScheduler` state data class instance.
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            shape (`Tuple`):
                the shape of the samples to be generated.
        """
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        last_timestep = self.config.num_train_timesteps
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                jnp.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].astype(jnp.int32)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = last_timestep // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (
                (jnp.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(jnp.int32)
            )
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = jnp.arange(last_timestep, 0, -step_ratio).round().copy().astype(jnp.int32)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
240

241
242
243
244
245
246
247
        # initial running values

        model_outputs = jnp.zeros((self.config.solver_order,) + shape, dtype=self.dtype)
        lower_order_nums = jnp.int32(0)
        prev_timestep = jnp.int32(-1)
        cur_sample = jnp.zeros(shape, dtype=self.dtype)

248
249
250
        return state.replace(
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
251
252
253
254
            model_outputs=model_outputs,
            lower_order_nums=lower_order_nums,
            prev_timestep=prev_timestep,
            cur_sample=cur_sample,
255
256
257
258
        )

    def convert_model_output(
        self,
259
        state: DPMSolverMultistepSchedulerState,
260
261
262
263
264
265
266
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
    ) -> jnp.ndarray:
        """
        Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs.

267
        DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        discretize an integral of the data prediction model. So we need to first convert the model output to the
        corresponding type to match the algorithm.

        Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or
        DPM-Solver++ for both noise prediction model and data prediction model.

        Args:
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.

        Returns:
            `jnp.ndarray`: the converted model output.
        """
        # DPM-Solver++ needs to solve an integral of the data prediction model.
        if self.config.algorithm_type == "dpmsolver++":
285
            if self.config.prediction_type == "epsilon":
286
                alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
287
                x0_pred = (sample - sigma_t * model_output) / alpha_t
288
            elif self.config.prediction_type == "sample":
289
                x0_pred = model_output
290
            elif self.config.prediction_type == "v_prediction":
291
                alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
292
                x0_pred = alpha_t * sample - sigma_t * model_output
293
294
            else:
                raise ValueError(
295
296
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    " or `v_prediction` for the FlaxDPMSolverMultistepScheduler."
297
298
                )

299
300
301
302
303
304
305
306
307
308
309
310
            if self.config.thresholding:
                # Dynamic thresholding in https://arxiv.org/abs/2205.11487
                dynamic_max_val = jnp.percentile(
                    jnp.abs(x0_pred), self.config.dynamic_thresholding_ratio, axis=tuple(range(1, x0_pred.ndim))
                )
                dynamic_max_val = jnp.maximum(
                    dynamic_max_val, self.config.sample_max_value * jnp.ones_like(dynamic_max_val)
                )
                x0_pred = jnp.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
            return x0_pred
        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type == "dpmsolver":
311
            if self.config.prediction_type == "epsilon":
312
                return model_output
313
            elif self.config.prediction_type == "sample":
314
                alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
315
316
                epsilon = (sample - alpha_t * model_output) / sigma_t
                return epsilon
317
            elif self.config.prediction_type == "v_prediction":
318
                alpha_t, sigma_t = state.alpha_t[timestep], state.sigma_t[timestep]
319
320
                epsilon = alpha_t * model_output + sigma_t * sample
                return epsilon
321
322
            else:
                raise ValueError(
323
324
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    " or `v_prediction` for the FlaxDPMSolverMultistepScheduler."
325
                )
326
327

    def dpm_solver_first_order_update(
328
329
330
331
332
333
        self,
        state: DPMSolverMultistepSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        prev_timestep: int,
        sample: jnp.ndarray,
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    ) -> jnp.ndarray:
        """
        One step for the first-order DPM-Solver (equivalent to DDIM).

        See https://arxiv.org/abs/2206.00927 for the detailed derivation.

        Args:
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            prev_timestep (`int`): previous discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.

        Returns:
            `jnp.ndarray`: the sample tensor at the previous timestep.
        """
        t, s0 = prev_timestep, timestep
        m0 = model_output
352
353
354
        lambda_t, lambda_s = state.lambda_t[t], state.lambda_t[s0]
        alpha_t, alpha_s = state.alpha_t[t], state.alpha_t[s0]
        sigma_t, sigma_s = state.sigma_t[t], state.sigma_t[s0]
355
356
357
358
359
360
361
362
363
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * m0
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * m0
        return x_t

    def multistep_dpm_solver_second_order_update(
        self,
364
        state: DPMSolverMultistepSchedulerState,
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        model_output_list: jnp.ndarray,
        timestep_list: List[int],
        prev_timestep: int,
        sample: jnp.ndarray,
    ) -> jnp.ndarray:
        """
        One step for the second-order multistep DPM-Solver.

        Args:
            model_output_list (`List[jnp.ndarray]`):
                direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`): current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`): previous discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.

        Returns:
            `jnp.ndarray`: the sample tensor at the previous timestep.
        """
        t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
        m0, m1 = model_output_list[-1], model_output_list[-2]
386
387
388
        lambda_t, lambda_s0, lambda_s1 = state.lambda_t[t], state.lambda_t[s0], state.lambda_t[s1]
        alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0]
        sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0]
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (jnp.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (jnp.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (jnp.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (jnp.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (jnp.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (jnp.exp(h) - 1.0)) * D0
                    - (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1
                )
        return x_t

    def multistep_dpm_solver_third_order_update(
        self,
424
        state: DPMSolverMultistepSchedulerState,
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
        model_output_list: jnp.ndarray,
        timestep_list: List[int],
        prev_timestep: int,
        sample: jnp.ndarray,
    ) -> jnp.ndarray:
        """
        One step for the third-order multistep DPM-Solver.

        Args:
            model_output_list (`List[jnp.ndarray]`):
                direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`): current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`): previous discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.

        Returns:
            `jnp.ndarray`: the sample tensor at the previous timestep.
        """
        t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3]
        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
        lambda_t, lambda_s0, lambda_s1, lambda_s2 = (
447
448
449
450
            state.lambda_t[t],
            state.lambda_t[s0],
            state.lambda_t[s1],
            state.lambda_t[s2],
451
        )
452
453
        alpha_t, alpha_s0 = state.alpha_t[t], state.alpha_t[s0]
        sigma_t, sigma_s0 = state.sigma_t[t], state.sigma_t[s0]
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m0
        D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
        D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
        D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (sigma_t / sigma_s0) * sample
                - (alpha_t * (jnp.exp(-h) - 1.0)) * D0
                + (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1
                - (alpha_t * ((jnp.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
            )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (alpha_t / alpha_s0) * sample
                - (sigma_t * (jnp.exp(h) - 1.0)) * D0
                - (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1
                - (sigma_t * ((jnp.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
            )
        return x_t

    def step(
        self,
        state: DPMSolverMultistepSchedulerState,
        model_output: jnp.ndarray,
        timestep: int,
        sample: jnp.ndarray,
        return_dict: bool = True,
    ) -> Union[FlaxDPMSolverMultistepSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by DPM-Solver. Core function to propagate the diffusion process
        from the learned model outputs (most often the predicted noise).

        Args:
            state (`DPMSolverMultistepSchedulerState`):
                the `FlaxDPMSolverMultistepScheduler` state data class instance.
            model_output (`jnp.ndarray`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`jnp.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than FlaxDPMSolverMultistepSchedulerOutput class

        Returns:
            [`FlaxDPMSolverMultistepSchedulerOutput`] or `tuple`: [`FlaxDPMSolverMultistepSchedulerOutput`] if
            `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.

        """
504
505
506
507
        if state.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )
508

509
510
511
512
513
514
        (step_index,) = jnp.where(state.timesteps == timestep, size=1)
        step_index = step_index[0]

        prev_timestep = jax.lax.select(step_index == len(state.timesteps) - 1, 0, state.timesteps[step_index + 1])

        model_output = self.convert_model_output(state, model_output, timestep, sample)
515
516
517
518
519
520
521
522
523
524
525

        model_outputs_new = jnp.roll(state.model_outputs, -1, axis=0)
        model_outputs_new = model_outputs_new.at[-1].set(model_output)
        state = state.replace(
            model_outputs=model_outputs_new,
            prev_timestep=prev_timestep,
            cur_sample=sample,
        )

        def step_1(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
            return self.dpm_solver_first_order_update(
526
                state,
527
                state.model_outputs[-1],
528
                state.timesteps[step_index],
529
530
531
532
533
534
                state.prev_timestep,
                state.cur_sample,
            )

        def step_23(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
            def step_2(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
535
                timestep_list = jnp.array([state.timesteps[step_index - 1], state.timesteps[step_index]])
536
                return self.multistep_dpm_solver_second_order_update(
537
                    state,
538
539
540
541
542
543
544
545
546
                    state.model_outputs,
                    timestep_list,
                    state.prev_timestep,
                    state.cur_sample,
                )

            def step_3(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray:
                timestep_list = jnp.array(
                    [
547
548
549
                        state.timesteps[step_index - 2],
                        state.timesteps[step_index - 1],
                        state.timesteps[step_index],
550
551
552
                    ]
                )
                return self.multistep_dpm_solver_third_order_update(
553
                    state,
554
555
556
557
558
559
                    state.model_outputs,
                    timestep_list,
                    state.prev_timestep,
                    state.cur_sample,
                )

560
561
562
            step_2_output = step_2(state)
            step_3_output = step_3(state)

563
            if self.config.solver_order == 2:
564
                return step_2_output
565
            elif self.config.lower_order_final and len(state.timesteps) < 15:
566
                return jax.lax.select(
567
                    state.lower_order_nums < 2,
568
569
570
571
572
                    step_2_output,
                    jax.lax.select(
                        step_index == len(state.timesteps) - 2,
                        step_2_output,
                        step_3_output,
573
574
575
                    ),
                )
            else:
576
                return jax.lax.select(
577
                    state.lower_order_nums < 2,
578
579
                    step_2_output,
                    step_3_output,
580
581
                )

582
583
584
        step_1_output = step_1(state)
        step_23_output = step_23(state)

585
        if self.config.solver_order == 1:
586
587
            prev_sample = step_1_output

588
        elif self.config.lower_order_final and len(state.timesteps) < 15:
589
            prev_sample = jax.lax.select(
590
                state.lower_order_nums < 1,
591
592
593
594
595
                step_1_output,
                jax.lax.select(
                    step_index == len(state.timesteps) - 1,
                    step_1_output,
                    step_23_output,
596
597
                ),
            )
598

599
        else:
600
            prev_sample = jax.lax.select(
601
                state.lower_order_nums < 1,
602
603
                step_1_output,
                step_23_output,
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
            )

        state = state.replace(
            lower_order_nums=jnp.minimum(state.lower_order_nums + 1, self.config.solver_order),
        )

        if not return_dict:
            return (prev_sample, state)

        return FlaxDPMSolverMultistepSchedulerOutput(prev_sample=prev_sample, state=state)

    def scale_model_input(
        self, state: DPMSolverMultistepSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
    ) -> jnp.ndarray:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            state (`DPMSolverMultistepSchedulerState`):
                the `FlaxDPMSolverMultistepScheduler` state data class instance.
            sample (`jnp.ndarray`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `jnp.ndarray`: scaled input sample
        """
        return sample

    def add_noise(
        self,
635
        state: DPMSolverMultistepSchedulerState,
636
637
638
639
        original_samples: jnp.ndarray,
        noise: jnp.ndarray,
        timesteps: jnp.ndarray,
    ) -> jnp.ndarray:
640
        return add_noise_common(state.common, original_samples, noise, timesteps)
641
642
643

    def __len__(self):
        return self.config.num_train_timesteps