pipeline_wan_animate.py 57.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import html
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import PIL
import regex as re
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModel, UMT5EncoderModel

from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput
from ...loaders import WanLoraLoaderMixin
from ...models import AutoencoderKLWan, WanAnimateTransformer3DModel
from ...schedulers import UniPCMultistepScheduler
from ...utils import is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ...video_processor import VideoProcessor
from ..pipeline_utils import DiffusionPipeline
from .image_processor import WanAnimateImageProcessor
from .pipeline_output import WanPipelineOutput


if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

if is_ftfy_available():
    import ftfy

EXAMPLE_DOC_STRING = """
    Examples:
        ```python
        >>> import torch
        >>> import numpy as np
        >>> from diffusers import WanAnimatePipeline
        >>> from diffusers.utils import export_to_video, load_image, load_video

        >>> model_id = "Wan-AI/Wan2.2-Animate-14B-Diffusers"
        >>> pipe = WanAnimatePipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
        >>> # Optionally upcast the Wan VAE to FP32
        >>> pipe.vae.to(torch.float32)
        >>> pipe.to("cuda")

        >>> # Load the reference character image
        >>> image = load_image(
        ...     "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
        ... )

        >>> # Load pose and face videos (preprocessed from reference video)
        >>> # Note: Videos should be preprocessed to extract pose keypoints and face features
        >>> # Refer to the Wan-Animate preprocessing documentation for details
        >>> pose_video = load_video("path/to/pose_video.mp4")
        >>> face_video = load_video("path/to/face_video.mp4")

        >>> # CFG is generally not used for Wan Animate
        >>> prompt = (
        ...     "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in "
        ...     "the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
        ... )

        >>> # Animation mode: Animate the character with the motion from pose/face videos
        >>> output = pipe(
        ...     image=image,
        ...     pose_video=pose_video,
        ...     face_video=face_video,
        ...     prompt=prompt,
        ...     height=height,
        ...     width=width,
        ...     segment_frame_length=77,  # Frame length of each inference segment
        ...     guidance_scale=1.0,
        ...     num_inference_steps=20,
        ...     mode="animate",
        ... ).frames[0]
        >>> export_to_video(output, "output_animation.mp4", fps=30)

        >>> # Replacement mode: Replace a character in the background video
        >>> # Requires additional background_video and mask_video inputs
        >>> background_video = load_video("path/to/background_video.mp4")
        >>> mask_video = load_video("path/to/mask_video.mp4")  # Black areas preserved, white areas generated
        >>> output = pipe(
        ...     image=image,
        ...     pose_video=pose_video,
        ...     face_video=face_video,
        ...     background_video=background_video,
        ...     mask_video=mask_video,
        ...     prompt=prompt,
        ...     height=height,
        ...     width=width,
        ...     segment_frame_length=77,  # Frame length of each inference segment
        ...     guidance_scale=1.0,
        ...     num_inference_steps=20,
        ...     mode="replace",
        ... ).frames[0]
        >>> export_to_video(output, "output_replacement.mp4", fps=30)
        ```
"""


def basic_clean(text):
    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()


def whitespace_clean(text):
    text = re.sub(r"\s+", " ", text)
    text = text.strip()
    return text


def prompt_clean(text):
    text = whitespace_clean(basic_clean(text))
    return text


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


class WanAnimatePipeline(DiffusionPipeline, WanLoraLoaderMixin):
    r"""
    Pipeline for unified character animation and replacement using Wan-Animate.

    WanAnimatePipeline takes a character image, pose video, and face video as input, and generates a video in two
    modes:

    1. **Animation mode**: The model generates a video of the character image that mimics the human motion in the input
       pose and face videos. The character is animated based on the provided motion controls, creating a new animated
       video of the character.

    2. **Replacement mode**: The model replaces a character in a background video with the provided character image,
       using the pose and face videos for motion control. This mode requires additional `background_video` and
       `mask_video` inputs. The mask video should have black regions where the original content should be preserved and
       white regions where the new character should be generated.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.WanLoraLoaderMixin.load_lora_weights`] for loading LoRA weights

    Args:
        tokenizer ([`T5Tokenizer`]):
            Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
            specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
        text_encoder ([`T5EncoderModel`]):
            [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
            the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
        image_encoder ([`CLIPVisionModel`]):
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModel), specifically
            the
            [clip-vit-huge-patch14](https://github.com/mlfoundations/open_clip/blob/main/docs/PRETRAINED.md#vit-h14-xlm-roberta-large)
            variant.
        transformer ([`WanAnimateTransformer3DModel`]):
            Conditional Transformer to denoise the input latents.
        scheduler ([`UniPCMultistepScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
        vae ([`AutoencoderKLWan`]):
            Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
        image_processor ([`CLIPImageProcessor`]):
            Image processor for preprocessing images before encoding.
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae"
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        tokenizer: AutoTokenizer,
        text_encoder: UMT5EncoderModel,
        vae: AutoencoderKLWan,
        scheduler: UniPCMultistepScheduler,
        image_processor: CLIPImageProcessor,
        image_encoder: CLIPVisionModel,
        transformer: WanAnimateTransformer3DModel,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            image_encoder=image_encoder,
            transformer=transformer,
            scheduler=scheduler,
            image_processor=image_processor,
        )

        self.vae_scale_factor_temporal = self.vae.config.scale_factor_temporal if getattr(self, "vae", None) else 4
        self.vae_scale_factor_spatial = self.vae.config.scale_factor_spatial if getattr(self, "vae", None) else 8
        self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
        self.video_processor_for_mask = VideoProcessor(
            vae_scale_factor=self.vae_scale_factor_spatial, do_normalize=False, do_convert_grayscale=True
        )
        # In case self.transformer is None (e.g. for some pipeline tests)
        spatial_patch_size = self.transformer.config.patch_size[-2:] if self.transformer is not None else (2, 2)
        self.vae_image_processor = WanAnimateImageProcessor(
            vae_scale_factor=self.vae_scale_factor_spatial,
            spatial_patch_size=spatial_patch_size,
            resample="bilinear",
            fill_color=0,
        )
        self.image_processor = image_processor

    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        num_videos_per_prompt: int = 1,
        max_sequence_length: int = 512,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        prompt = [prompt_clean(u) for u in prompt]
        batch_size = len(prompt)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            add_special_tokens=True,
            return_attention_mask=True,
            return_tensors="pt",
        )
        text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
        seq_lens = mask.gt(0).sum(dim=1).long()

        prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
        prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
        prompt_embeds = torch.stack(
            [torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
        )

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        _, seq_len, _ = prompt_embeds.shape
        prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)

        return prompt_embeds

    # Copied from diffusers.pipelines.wan.pipeline_wan_i2v.WanImageToVideoPipeline.encode_image
    def encode_image(
        self,
        image: PipelineImageInput,
        device: Optional[torch.device] = None,
    ):
        device = device or self._execution_device
        image = self.image_processor(images=image, return_tensors="pt").to(device)
        image_embeds = self.image_encoder(**image, output_hidden_states=True)
        return image_embeds.hidden_states[-2]

    # Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        do_classifier_free_guidance: bool = True,
        num_videos_per_prompt: int = 1,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        max_sequence_length: int = 226,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
                Whether to use classifier free guidance or not.
            num_videos_per_prompt (`int`, *optional*, defaults to 1):
                Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            device: (`torch.device`, *optional*):
                torch device
            dtype: (`torch.dtype`, *optional*):
                torch dtype
        """
        device = device or self._execution_device

        prompt = [prompt] if isinstance(prompt, str) else prompt
        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            prompt_embeds = self._get_t5_prompt_embeds(
                prompt=prompt,
                num_videos_per_prompt=num_videos_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
                dtype=dtype,
            )

        if do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt

            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )

            negative_prompt_embeds = self._get_t5_prompt_embeds(
                prompt=negative_prompt,
                num_videos_per_prompt=num_videos_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
                dtype=dtype,
            )

        return prompt_embeds, negative_prompt_embeds

    def check_inputs(
        self,
        prompt,
        negative_prompt,
        image,
        pose_video,
        face_video,
        background_video,
        mask_video,
        height,
        width,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        image_embeds=None,
        callback_on_step_end_tensor_inputs=None,
        mode=None,
        prev_segment_conditioning_frames=None,
    ):
        if image is not None and image_embeds is not None:
            raise ValueError(
                f"Cannot forward both `image`: {image} and `image_embeds`: {image_embeds}. Please make sure to"
                " only forward one of the two."
            )
        if image is None and image_embeds is None:
            raise ValueError(
                "Provide either `image` or `prompt_embeds`. Cannot leave both `image` and `image_embeds` undefined."
            )
        if image is not None and not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image):
            raise ValueError(f"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` but is {type(image)}")
        if pose_video is None:
            raise ValueError("Provide `pose_video`. Cannot leave `pose_video` undefined.")
        if face_video is None:
            raise ValueError("Provide `face_video`. Cannot leave `face_video` undefined.")
        if not isinstance(pose_video, list) or not isinstance(face_video, list):
            raise ValueError("`pose_video` and `face_video` must be lists of PIL images.")
        if len(pose_video) == 0 or len(face_video) == 0:
            raise ValueError("`pose_video` and `face_video` must contain at least one frame.")
        if mode == "replace" and (background_video is None or mask_video is None):
            raise ValueError(
                "Provide `background_video` and `mask_video`. Cannot leave both `background_video` and `mask_video`"
                " undefined when mode is `replace`."
            )
        if mode == "replace" and (not isinstance(background_video, list) or not isinstance(mask_video, list)):
            raise ValueError("`background_video` and `mask_video` must be lists of PIL images when mode is `replace`.")

        if height % 16 != 0 or width % 16 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found"
                f" {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif negative_prompt is not None and (
            not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
        ):
            raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")

        if mode is not None and (not isinstance(mode, str) or mode not in ("animate", "replace")):
            raise ValueError(
                f"`mode` has to be of type `str` and in ('animate', 'replace') but its type is {type(mode)} and value is {mode}"
            )

        if prev_segment_conditioning_frames is not None and (
            not isinstance(prev_segment_conditioning_frames, int) or prev_segment_conditioning_frames not in (1, 5)
        ):
            raise ValueError(
                f"`prev_segment_conditioning_frames` has to be of type `int` and 1 or 5 but its type is"
                f" {type(prev_segment_conditioning_frames)} and value is {prev_segment_conditioning_frames}"
            )

    def get_i2v_mask(
        self,
        batch_size: int,
        latent_t: int,
        latent_h: int,
        latent_w: int,
        mask_len: int = 1,
        mask_pixel_values: Optional[torch.Tensor] = None,
        dtype: Optional[torch.dtype] = None,
        device: Union[str, torch.device] = "cuda",
    ) -> torch.Tensor:
        # mask_pixel_values shape (if supplied): [B, C = 1, T, latent_h, latent_w]
        if mask_pixel_values is None:
            mask_lat_size = torch.zeros(
                batch_size, 1, (latent_t - 1) * 4 + 1, latent_h, latent_w, dtype=dtype, device=device
            )
        else:
            mask_lat_size = mask_pixel_values.clone().to(device=device, dtype=dtype)
        mask_lat_size[:, :, :mask_len] = 1
        first_frame_mask = mask_lat_size[:, :, 0:1]
        # Repeat first frame mask self.vae_scale_factor_temporal (= 4) times in the frame dimension
        first_frame_mask = torch.repeat_interleave(first_frame_mask, dim=2, repeats=self.vae_scale_factor_temporal)
        mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:]], dim=2)
        mask_lat_size = mask_lat_size.view(
            batch_size, -1, self.vae_scale_factor_temporal, latent_h, latent_w
        ).transpose(1, 2)  # [B, C = 1, 4 * T_lat, H_lat, W_lat] --> [B, C = 4, T_lat, H_lat, W_lat]

        return mask_lat_size

    def prepare_reference_image_latents(
        self,
        image: torch.Tensor,
        batch_size: int = 1,
        sample_mode: int = "argmax",
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ) -> torch.Tensor:
        # image shape: (B, C, H, W) or (B, C, T, H, W)
        dtype = dtype or self.vae.dtype
        if image.ndim == 4:
            # Add a singleton frame dimension after the channels dimension
            image = image.unsqueeze(2)

        _, _, _, height, width = image.shape
        latent_height = height // self.vae_scale_factor_spatial
        latent_width = width // self.vae_scale_factor_spatial

        # Encode image to latents using VAE
        image = image.to(device=device, dtype=dtype)
        if isinstance(generator, list):
            # Like in prepare_latents, assume len(generator) == batch_size
            ref_image_latents = [
                retrieve_latents(self.vae.encode(image), generator=g, sample_mode=sample_mode) for g in generator
            ]
            ref_image_latents = torch.cat(ref_image_latents)
        else:
            ref_image_latents = retrieve_latents(self.vae.encode(image), generator, sample_mode)
        # Standardize latents in preparation for Wan VAE encode
        latents_mean = (
            torch.tensor(self.vae.config.latents_mean)
            .view(1, self.vae.config.z_dim, 1, 1, 1)
            .to(ref_image_latents.device, ref_image_latents.dtype)
        )
        latents_recip_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
            ref_image_latents.device, ref_image_latents.dtype
        )
        ref_image_latents = (ref_image_latents - latents_mean) * latents_recip_std
        # Handle the case where we supply one image and one generator, but batch_size > 1 (e.g. generating multiple
        # videos per prompt)
        if ref_image_latents.shape[0] == 1 and batch_size > 1:
            ref_image_latents = ref_image_latents.expand(batch_size, -1, -1, -1, -1)

        # Prepare I2V mask in latent space and prepend to the reference image latents along channel dim
        reference_image_mask = self.get_i2v_mask(batch_size, 1, latent_height, latent_width, 1, None, dtype, device)
        reference_image_latents = torch.cat([reference_image_mask, ref_image_latents], dim=1)

        return reference_image_latents

    def prepare_prev_segment_cond_latents(
        self,
        prev_segment_cond_video: Optional[torch.Tensor] = None,
        background_video: Optional[torch.Tensor] = None,
        mask_video: Optional[torch.Tensor] = None,
        batch_size: int = 1,
        segment_frame_length: int = 77,
        start_frame: int = 0,
        height: int = 720,
        width: int = 1280,
        prev_segment_cond_frames: int = 1,
        task: str = "animate",
        interpolation_mode: str = "bicubic",
        sample_mode: str = "argmax",
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ) -> torch.Tensor:
        # prev_segment_cond_video shape: (B, C, T, H, W) in pixel space if supplied
        # background_video shape: (B, C, T, H, W) (same as prev_segment_cond_video shape)
        # mask_video shape: (B, 1, T, H, W) (same as prev_segment_cond_video, but with only 1 channel)
        dtype = dtype or self.vae.dtype
        if prev_segment_cond_video is None:
            if task == "replace":
                prev_segment_cond_video = background_video[:, :, :prev_segment_cond_frames].to(dtype)
            else:
                cond_frames_shape = (batch_size, 3, prev_segment_cond_frames, height, width)  # In pixel space
                prev_segment_cond_video = torch.zeros(cond_frames_shape, dtype=dtype, device=device)

        data_batch_size, channels, _, segment_height, segment_width = prev_segment_cond_video.shape
        num_latent_frames = (segment_frame_length - 1) // self.vae_scale_factor_temporal + 1
        latent_height = height // self.vae_scale_factor_spatial
        latent_width = width // self.vae_scale_factor_spatial
        if segment_height != height or segment_width != width:
            print(
                f"Interpolating prev segment cond video from ({segment_width}, {segment_height}) to ({width}, {height})"
            )
            # Perform a 4D (spatial) rather than a 5D (spatiotemporal) reshape, following the original code
            prev_segment_cond_video = prev_segment_cond_video.transpose(1, 2).flatten(0, 1)  # [B * T, C, H, W]
            prev_segment_cond_video = F.interpolate(
                prev_segment_cond_video, size=(height, width), mode=interpolation_mode
            )
            prev_segment_cond_video = prev_segment_cond_video.unflatten(0, (batch_size, -1)).transpose(1, 2)

        # Fill the remaining part of the cond video segment with zeros (if animating) or the background video (if
        # replacing).
        if task == "replace":
            remaining_segment = background_video[:, :, prev_segment_cond_frames:].to(dtype)
        else:
            remaining_segment_frames = segment_frame_length - prev_segment_cond_frames
            remaining_segment = torch.zeros(
                batch_size, channels, remaining_segment_frames, height, width, dtype=dtype, device=device
            )

        # Prepend the conditioning frames from the previous segment to the remaining segment video in the frame dim
        prev_segment_cond_video = prev_segment_cond_video.to(dtype=dtype)
        full_segment_cond_video = torch.cat([prev_segment_cond_video, remaining_segment], dim=2)

        if isinstance(generator, list):
            if data_batch_size == len(generator):
                prev_segment_cond_latents = [
                    retrieve_latents(self.vae.encode(full_segment_cond_video[i].unsqueeze(0)), g, sample_mode)
                    for i, g in enumerate(generator)
                ]
            elif data_batch_size == 1:
                # Like prepare_latents, assume len(generator) == batch_size
                prev_segment_cond_latents = [
                    retrieve_latents(self.vae.encode(full_segment_cond_video), g, sample_mode) for g in generator
                ]
            else:
                raise ValueError(
                    f"The batch size of the prev segment video should be either {len(generator)} or 1 but is"
                    f" {data_batch_size}"
                )
            prev_segment_cond_latents = torch.cat(prev_segment_cond_latents)
        else:
            prev_segment_cond_latents = retrieve_latents(
                self.vae.encode(full_segment_cond_video), generator, sample_mode
            )
        # Standardize latents in preparation for Wan VAE encode
        latents_mean = (
            torch.tensor(self.vae.config.latents_mean)
            .view(1, self.vae.config.z_dim, 1, 1, 1)
            .to(prev_segment_cond_latents.device, prev_segment_cond_latents.dtype)
        )
        latents_recip_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
            prev_segment_cond_latents.device, prev_segment_cond_latents.dtype
        )
        prev_segment_cond_latents = (prev_segment_cond_latents - latents_mean) * latents_recip_std

        # Prepare I2V mask
        if task == "replace":
            mask_video = 1 - mask_video
            mask_video = mask_video.permute(0, 2, 1, 3, 4)
            mask_video = mask_video.flatten(0, 1)
            mask_video = F.interpolate(mask_video, size=(latent_height, latent_width), mode="nearest")
            mask_pixel_values = mask_video.unflatten(0, (batch_size, -1))
            mask_pixel_values = mask_pixel_values.permute(0, 2, 1, 3, 4)  # output shape: [B, C = 1, T, H_lat, W_lat]
        else:
            mask_pixel_values = None
        prev_segment_cond_mask = self.get_i2v_mask(
            batch_size,
            num_latent_frames,
            latent_height,
            latent_width,
            mask_len=prev_segment_cond_frames if start_frame > 0 else 0,
            mask_pixel_values=mask_pixel_values,
            dtype=dtype,
            device=device,
        )

        # Prepend cond I2V mask to prev segment cond latents along channel dimension
        prev_segment_cond_latents = torch.cat([prev_segment_cond_mask, prev_segment_cond_latents], dim=1)
        return prev_segment_cond_latents

    def prepare_pose_latents(
        self,
        pose_video: torch.Tensor,
        batch_size: int = 1,
        sample_mode: int = "argmax",
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
    ) -> torch.Tensor:
        # pose_video shape: (B, C, T, H, W)
        pose_video = pose_video.to(device=device, dtype=dtype if dtype is not None else self.vae.dtype)
        if isinstance(generator, list):
            pose_latents = [
                retrieve_latents(self.vae.encode(pose_video), generator=g, sample_mode=sample_mode) for g in generator
            ]
            pose_latents = torch.cat(pose_latents)
        else:
            pose_latents = retrieve_latents(self.vae.encode(pose_video), generator, sample_mode)
        # Standardize latents in preparation for Wan VAE encode
        latents_mean = (
            torch.tensor(self.vae.config.latents_mean)
            .view(1, self.vae.config.z_dim, 1, 1, 1)
            .to(pose_latents.device, pose_latents.dtype)
        )
        latents_recip_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
            pose_latents.device, pose_latents.dtype
        )
        pose_latents = (pose_latents - latents_mean) * latents_recip_std
        if pose_latents.shape[0] == 1 and batch_size > 1:
            pose_latents = pose_latents.expand(batch_size, -1, -1, -1, -1)
        return pose_latents

    def prepare_latents(
        self,
        batch_size: int,
        num_channels_latents: int = 16,
        height: int = 720,
        width: int = 1280,
        num_frames: int = 77,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
        latent_height = height // self.vae_scale_factor_spatial
        latent_width = width // self.vae_scale_factor_spatial

        shape = (batch_size, num_channels_latents, num_latent_frames + 1, latent_height, latent_width)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device=device, dtype=dtype)

        return latents

    def pad_video_frames(self, frames: List[Any], num_target_frames: int) -> List[Any]:
        """
        Pads an array-like video `frames` to `num_target_frames` using a "reflect"-like strategy. The frame dimension
        is assumed to be the first dimension. In the 1D case, we can visualize this strategy as follows:

        pad_video_frames([1, 2, 3, 4, 5], 10) -> [1, 2, 3, 4, 5, 4, 3, 2, 1, 2]
        """
        idx = 0
        flip = False
        target_frames = []
        while len(target_frames) < num_target_frames:
            target_frames.append(deepcopy(frames[idx]))
            if flip:
                idx -= 1
            else:
                idx += 1
            if idx == 0 or idx == len(frames) - 1:
                flip = not flip

        return target_frames

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def current_timestep(self):
        return self._current_timestep

    @property
    def interrupt(self):
        return self._interrupt

    @property
    def attention_kwargs(self):
        return self._attention_kwargs

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        image: PipelineImageInput,
        pose_video: List[PIL.Image.Image],
        face_video: List[PIL.Image.Image],
        background_video: Optional[List[PIL.Image.Image]] = None,
        mask_video: Optional[List[PIL.Image.Image]] = None,
        prompt: Union[str, List[str]] = None,
        negative_prompt: Union[str, List[str]] = None,
        height: int = 720,
        width: int = 1280,
        segment_frame_length: int = 77,
        num_inference_steps: int = 20,
        mode: str = "animate",
        prev_segment_conditioning_frames: int = 1,
        motion_encode_batch_size: Optional[int] = None,
        guidance_scale: float = 1.0,
        num_videos_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        image_embeds: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "np",
        return_dict: bool = True,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 512,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            image (`PipelineImageInput`):
                The input character image to condition the generation on. Must be an image, a list of images or a
                `torch.Tensor`.
            pose_video (`List[PIL.Image.Image]`):
                The input pose video to condition the generation on. Must be a list of PIL images.
            face_video (`List[PIL.Image.Image]`):
                The input face video to condition the generation on. Must be a list of PIL images.
            background_video (`List[PIL.Image.Image]`, *optional*):
                When mode is `"replace"`, the input background video to condition the generation on. Must be a list of
                PIL images.
            mask_video (`List[PIL.Image.Image]`, *optional*):
                When mode is `"replace"`, the input mask video to condition the generation on. Must be a list of PIL
                images.
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            mode (`str`, defaults to `"animation"`):
                The mode of the generation. Choose between `"animate"` and `"replace"`.
            prev_segment_conditioning_frames (`int`, defaults to `1`):
                The number of frames from the previous video segment to be used for temporal guidance. Recommended to
                be 1 or 5. In general, should be 4N + 1, where N is a non-negative integer.
            motion_encode_batch_size (`int`, *optional*):
                The batch size for batched encoding of the face video via the motion encoder. This allows trading off
                inference speed for lower memory usage by setting a smaller batch size. Will default to
                `self.transformer.config.motion_encoder_batch_size` if not set.
            height (`int`, defaults to `720`):
                The height of the generated video.
            width (`int`, defaults to `1280`):
                The width of the generated video.
            segment_frame_length (`int`, defaults to `77`):
                The number of frames in each generated video segment. The total frames of video generated will be equal
                to the number of frames in `pose_video`; we will generate the video in segments until we have hit this
                length. In general, should be 4N + 1, where N is a non-negative integer.
            num_inference_steps (`int`, defaults to `20`):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, defaults to `1.0`):
                Guidance scale as defined in [Classifier-Free Diffusion
                Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
                of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
                `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
                the text `prompt`, usually at the expense of lower image quality. By default, CFG is not used in Wan
                Animate inference.
            num_videos_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `negative_prompt` input argument.
            image_embeds (`torch.Tensor`, *optional*):
                Pre-generated image embeddings. Can be used to easily tweak image inputs (weighting). If not provided,
                image embeddings are generated from the `image` input argument.
            output_type (`str`, *optional*, defaults to `"np"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
            attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.
            max_sequence_length (`int`, defaults to `512`):
                The maximum sequence length of the text encoder. If the prompt is longer than this, it will be
                truncated. If the prompt is shorter, it will be padded to this length.

        Examples:

        Returns:
            [`~WanPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
                the first element is a list with the generated images and the second element is a list of `bool`s
                indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            negative_prompt,
            image,
            pose_video,
            face_video,
            background_video,
            mask_video,
            height,
            width,
            prompt_embeds,
            negative_prompt_embeds,
            image_embeds,
            callback_on_step_end_tensor_inputs,
            mode,
            prev_segment_conditioning_frames,
        )

        if segment_frame_length % self.vae_scale_factor_temporal != 1:
            logger.warning(
                f"`segment_frame_length - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the"
                f" nearest number."
            )
            segment_frame_length = (
                segment_frame_length // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
            )
        segment_frame_length = max(segment_frame_length, 1)

        self._guidance_scale = guidance_scale
        self._attention_kwargs = attention_kwargs
        self._current_timestep = None
        self._interrupt = False

        device = self._execution_device

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # As we generate in segments of `segment_frame_length`, set the target frame length to be the least multiple
        # of the effective segment length greater than or equal to the length of `pose_video`.
        cond_video_frames = len(pose_video)
        effective_segment_length = segment_frame_length - prev_segment_conditioning_frames
        last_segment_frames = (cond_video_frames - prev_segment_conditioning_frames) % effective_segment_length
        if last_segment_frames == 0:
            num_padding_frames = 0
        else:
            num_padding_frames = effective_segment_length - last_segment_frames
        num_target_frames = cond_video_frames + num_padding_frames
        num_segments = num_target_frames // effective_segment_length

        # 3. Encode input prompt
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt=prompt,
            negative_prompt=negative_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            num_videos_per_prompt=num_videos_per_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            max_sequence_length=max_sequence_length,
            device=device,
        )

        transformer_dtype = self.transformer.dtype
        prompt_embeds = prompt_embeds.to(transformer_dtype)
        if negative_prompt_embeds is not None:
            negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)

        # 4. Preprocess and encode the reference (character) image
        image_height, image_width = self.video_processor.get_default_height_width(image)
        if image_height != height or image_width != width:
            logger.warning(f"Reshaping reference image from ({image_width}, {image_height}) to ({width}, {height})")
        image_pixels = self.vae_image_processor.preprocess(image, height=height, width=width, resize_mode="fill").to(
            device, dtype=torch.float32
        )

        # Get CLIP features from the reference image
        if image_embeds is None:
            image_embeds = self.encode_image(image, device)
        image_embeds = image_embeds.repeat(batch_size * num_videos_per_prompt, 1, 1)
        image_embeds = image_embeds.to(transformer_dtype)

        # 5. Encode conditioning videos (pose, face)
        pose_video = self.pad_video_frames(pose_video, num_target_frames)
        face_video = self.pad_video_frames(face_video, num_target_frames)

        # TODO: also support np.ndarray input (e.g. from decord like the original implementation?)
        pose_video_width, pose_video_height = pose_video[0].size
        if pose_video_height != height or pose_video_width != width:
            logger.warning(
                f"Reshaping pose video from ({pose_video_width}, {pose_video_height}) to ({width}, {height})"
            )
        pose_video = self.video_processor.preprocess_video(pose_video, height=height, width=width).to(
            device, dtype=torch.float32
        )

        face_video_width, face_video_height = face_video[0].size
        expected_face_size = self.transformer.config.motion_encoder_size
        if face_video_width != expected_face_size or face_video_height != expected_face_size:
            logger.warning(
                f"Reshaping face video from ({face_video_width}, {face_video_height}) to ({expected_face_size},"
                f" {expected_face_size})"
            )
        face_video = self.video_processor.preprocess_video(
            face_video, height=expected_face_size, width=expected_face_size
        ).to(device, dtype=torch.float32)

        if mode == "replace":
            background_video = self.pad_video_frames(background_video, num_target_frames)
            mask_video = self.pad_video_frames(mask_video, num_target_frames)

            background_video = self.video_processor.preprocess_video(background_video, height=height, width=width).to(
                device, dtype=torch.float32
            )
            mask_video = self.video_processor_for_mask.preprocess_video(mask_video, height=height, width=width).to(
                device, dtype=torch.float32
            )

        # 6. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 7. Prepare latent variables which stay constant for all inference segments
        num_channels_latents = self.vae.config.z_dim

        # Get VAE-encoded latents of the reference (character) image
        reference_image_latents = self.prepare_reference_image_latents(
            image_pixels, batch_size * num_videos_per_prompt, generator=generator, device=device
        )

        # 8. Loop over video inference segments
        start = 0
        end = segment_frame_length  # Data space frames, not latent frames
        all_out_frames = []
        out_frames = None

        for _ in range(num_segments):
            assert start + prev_segment_conditioning_frames < cond_video_frames

            # Sample noisy latents from prior for the current inference segment
            latents = self.prepare_latents(
                batch_size * num_videos_per_prompt,
                num_channels_latents=num_channels_latents,
                height=height,
                width=width,
                num_frames=segment_frame_length,
                dtype=torch.float32,
                device=device,
                generator=generator,
                latents=latents if start == 0 else None,  # Only use pre-calculated latents for first segment
            )

            pose_video_segment = pose_video[:, :, start:end]
            face_video_segment = face_video[:, :, start:end]

            face_video_segment = face_video_segment.expand(batch_size * num_videos_per_prompt, -1, -1, -1, -1)
            face_video_segment = face_video_segment.to(dtype=transformer_dtype)

            if start > 0:
                prev_segment_cond_video = out_frames[:, :, -prev_segment_conditioning_frames:].clone().detach()
            else:
                prev_segment_cond_video = None

            if mode == "replace":
                background_video_segment = background_video[:, :, start:end]
                mask_video_segment = mask_video[:, :, start:end]

                background_video_segment = background_video_segment.expand(
                    batch_size * num_videos_per_prompt, -1, -1, -1, -1
                )
                mask_video_segment = mask_video_segment.expand(batch_size * num_videos_per_prompt, -1, -1, -1, -1)
            else:
                background_video_segment = None
                mask_video_segment = None

            pose_latents = self.prepare_pose_latents(
                pose_video_segment, batch_size * num_videos_per_prompt, generator=generator, device=device
            )
            pose_latents = pose_latents.to(dtype=transformer_dtype)

            prev_segment_cond_latents = self.prepare_prev_segment_cond_latents(
                prev_segment_cond_video,
                background_video=background_video_segment,
                mask_video=mask_video_segment,
                batch_size=batch_size * num_videos_per_prompt,
                segment_frame_length=segment_frame_length,
                start_frame=start,
                height=height,
                width=width,
                prev_segment_cond_frames=prev_segment_conditioning_frames,
                task=mode,
                generator=generator,
                device=device,
            )

            # Concatenate the reference latents in the frame dimension
            reference_latents = torch.cat([reference_image_latents, prev_segment_cond_latents], dim=2)

            # 8.1 Denoising loop
            num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
            self._num_timesteps = len(timesteps)

            with self.progress_bar(total=num_inference_steps) as progress_bar:
                for i, t in enumerate(timesteps):
                    if self.interrupt:
                        continue

                    self._current_timestep = t

                    # Concatenate the reference image + prev segment conditioning in the channel dim
                    latent_model_input = torch.cat([latents, reference_latents], dim=1).to(transformer_dtype)
                    timestep = t.expand(latents.shape[0])

                    with self.transformer.cache_context("cond"):
                        noise_pred = self.transformer(
                            hidden_states=latent_model_input,
                            timestep=timestep,
                            encoder_hidden_states=prompt_embeds,
                            encoder_hidden_states_image=image_embeds,
                            pose_hidden_states=pose_latents,
                            face_pixel_values=face_video_segment,
                            motion_encode_batch_size=motion_encode_batch_size,
                            attention_kwargs=attention_kwargs,
                            return_dict=False,
                        )[0]

                    if self.do_classifier_free_guidance:
                        # Blank out face for unconditional guidance (set all pixels to -1)
                        face_pixel_values_uncond = face_video_segment * 0 - 1
                        with self.transformer.cache_context("uncond"):
                            noise_uncond = self.transformer(
                                hidden_states=latent_model_input,
                                timestep=timestep,
                                encoder_hidden_states=negative_prompt_embeds,
                                encoder_hidden_states_image=image_embeds,
                                pose_hidden_states=pose_latents,
                                face_pixel_values=face_pixel_values_uncond,
                                motion_encode_batch_size=motion_encode_batch_size,
                                attention_kwargs=attention_kwargs,
                                return_dict=False,
                            )[0]
                            noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                    if callback_on_step_end is not None:
                        callback_kwargs = {}
                        for k in callback_on_step_end_tensor_inputs:
                            callback_kwargs[k] = locals()[k]
                        callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                        latents = callback_outputs.pop("latents", latents)
                        prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                        negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                    # call the callback, if provided
                    if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                        progress_bar.update()

                    if XLA_AVAILABLE:
                        xm.mark_step()

            latents = latents.to(self.vae.dtype)
            # Destandardize latents in preparation for Wan VAE decoding
            latents_mean = (
                torch.tensor(self.vae.config.latents_mean)
                .view(1, self.vae.config.z_dim, 1, 1, 1)
                .to(latents.device, latents.dtype)
            )
            latents_recip_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(
                1, self.vae.config.z_dim, 1, 1, 1
            ).to(latents.device, latents.dtype)
            latents = latents / latents_recip_std + latents_mean
            # Skip the first latent frame (used for conditioning)
            out_frames = self.vae.decode(latents[:, :, 1:], return_dict=False)[0]

            if start > 0:
                out_frames = out_frames[:, :, prev_segment_conditioning_frames:]
            all_out_frames.append(out_frames)

            start += effective_segment_length
            end += effective_segment_length

            # Reset scheduler timesteps / state for next denoising loop
            self.scheduler.set_timesteps(num_inference_steps, device=device)
            timesteps = self.scheduler.timesteps

        self._current_timestep = None
        assert start + prev_segment_conditioning_frames >= cond_video_frames

        if not output_type == "latent":
            video = torch.cat(all_out_frames, dim=2)[:, :, :cond_video_frames]
            video = self.video_processor.postprocess_video(video, output_type=output_type)
        else:
            video = latents

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (video,)

        return WanPipelineOutput(frames=video)