lora.py 4.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

17
import torch.nn.functional as F
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from torch import nn


class LoRALinearLayer(nn.Module):
    def __init__(self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None):
        super().__init__()

        if rank > min(in_features, out_features):
            raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}")

        self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
        self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states):
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)


class LoRAConv2dLayer(nn.Module):
    def __init__(self, in_features, out_features, rank=4, network_alpha=None):
        super().__init__()

        if rank > min(in_features, out_features):
            raise ValueError(f"LoRA rank {rank} must be less or equal than {min(in_features, out_features)}")

        self.down = nn.Conv2d(in_features, rank, (1, 1), (1, 1), bias=False)
        self.up = nn.Conv2d(rank, out_features, (1, 1), (1, 1), bias=False)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        self.network_alpha = network_alpha
        self.rank = rank

        nn.init.normal_(self.down.weight, std=1 / rank)
        nn.init.zeros_(self.up.weight)

    def forward(self, hidden_states):
        orig_dtype = hidden_states.dtype
        dtype = self.down.weight.dtype

        down_hidden_states = self.down(hidden_states.to(dtype))
        up_hidden_states = self.up(down_hidden_states)

        if self.network_alpha is not None:
            up_hidden_states *= self.network_alpha / self.rank

        return up_hidden_states.to(orig_dtype)


class LoRACompatibleConv(nn.Conv2d):
    """
    A convolutional layer that can be used with LoRA.
    """

    def __init__(self, *args, lora_layer: Optional[LoRAConv2dLayer] = None, **kwargs):
        super().__init__(*args, **kwargs)
        self.lora_layer = lora_layer

    def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]):
        self.lora_layer = lora_layer

    def forward(self, x):
        if self.lora_layer is None:
95
96
97
            # make sure to the functional Conv2D function as otherwise torch.compile's graph will break
            # see: https://github.com/huggingface/diffusers/pull/4315
            return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        else:
            return super().forward(x) + self.lora_layer(x)


class LoRACompatibleLinear(nn.Linear):
    """
    A Linear layer that can be used with LoRA.
    """

    def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
        super().__init__(*args, **kwargs)
        self.lora_layer = lora_layer

    def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]):
        self.lora_layer = lora_layer

    def forward(self, x):
        if self.lora_layer is None:
            return super().forward(x)
        else:
            return super().forward(x) + self.lora_layer(x)