flux.md 24 KB
Newer Older
Aryan's avatar
Aryan committed
1
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Sayak Paul's avatar
Sayak Paul committed
2
3
4
5
6
7
8
9
10
11
12
13
14

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Flux

Steven Liu's avatar
Steven Liu committed
15
16
<div class="flex flex-wrap space-x-1">
  <img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
Steven Liu's avatar
Steven Liu committed
17
  <img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
Steven Liu's avatar
Steven Liu committed
18
19
</div>

20
Flux is a series of text-to-image generation models based on diffusion transformers. To know more about Flux, check out the original [blog post](https://blackforestlabs.ai/announcing-black-forest-labs/) by the creators of Flux, Black Forest Labs.
Sayak Paul's avatar
Sayak Paul committed
21
22
23
24
25

Original model checkpoints for Flux can be found [here](https://huggingface.co/black-forest-labs). Original inference code can be found [here](https://github.com/black-forest-labs/flux).

<Tip>

26
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more.  For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
Sayak Paul's avatar
Sayak Paul committed
27
28
29

</Tip>

Aryan's avatar
Aryan committed
30
Flux comes in the following variants:
Sayak Paul's avatar
Sayak Paul committed
31

Aryan's avatar
Aryan committed
32
33
34
35
36
37
38
39
40
41
| model type | model id |
|:----------:|:--------:|
| Timestep-distilled | [`black-forest-labs/FLUX.1-schnell`](https://huggingface.co/black-forest-labs/FLUX.1-schnell) |
| Guidance-distilled | [`black-forest-labs/FLUX.1-dev`](https://huggingface.co/black-forest-labs/FLUX.1-dev) |
| Fill Inpainting/Outpainting (Guidance-distilled) | [`black-forest-labs/FLUX.1-Fill-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev) |
| Canny Control (Guidance-distilled) | [`black-forest-labs/FLUX.1-Canny-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev) |
| Depth Control (Guidance-distilled) | [`black-forest-labs/FLUX.1-Depth-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev) |
| Canny Control (LoRA) | [`black-forest-labs/FLUX.1-Canny-dev-lora`](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev-lora) |
| Depth Control (LoRA) | [`black-forest-labs/FLUX.1-Depth-dev-lora`](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev-lora) |
| Redux (Adapter) | [`black-forest-labs/FLUX.1-Redux-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Redux-dev) |
Sayak Paul's avatar
Sayak Paul committed
42
| Kontext | [`black-forest-labs/FLUX.1-kontext`](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev) |
Sayak Paul's avatar
Sayak Paul committed
43

Aryan's avatar
Aryan committed
44
All checkpoints have different usage which we detail below.
Sayak Paul's avatar
Sayak Paul committed
45
46
47

### Timestep-distilled

48
* `max_sequence_length` cannot be more than 256.
Sayak Paul's avatar
Sayak Paul committed
49
50
51
52
53
* `guidance_scale` needs to be 0.
* As this is a timestep-distilled model, it benefits from fewer sampling steps.

```python
import torch
54
from diffusers import FluxPipeline
Sayak Paul's avatar
Sayak Paul committed
55
56
57
58
59
60

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()

prompt = "A cat holding a sign that says hello world"
out = pipe(
61
62
63
64
65
    prompt=prompt,
    guidance_scale=0.,
    height=768,
    width=1360,
    num_inference_steps=4,
Sayak Paul's avatar
Sayak Paul committed
66
67
68
69
70
71
72
73
    max_sequence_length=256,
).images[0]
out.save("image.png")
```

### Guidance-distilled

* The guidance-distilled variant takes about 50 sampling steps for good-quality generation.
74
* It doesn't have any limitations around the `max_sequence_length`.
Sayak Paul's avatar
Sayak Paul committed
75
76
77

```python
import torch
78
from diffusers import FluxPipeline
Sayak Paul's avatar
Sayak Paul committed
79
80
81
82
83
84

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()

prompt = "a tiny astronaut hatching from an egg on the moon"
out = pipe(
85
86
87
88
    prompt=prompt,
    guidance_scale=3.5,
    height=768,
    width=1360,
Sayak Paul's avatar
Sayak Paul committed
89
90
91
92
93
    num_inference_steps=50,
).images[0]
out.save("image.png")
```

Aryan's avatar
Aryan committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
### Fill Inpainting/Outpainting

* Flux Fill pipeline does not require `strength` as an input like regular inpainting pipelines.
* It supports both inpainting and outpainting.

```python
import torch
from diffusers import FluxFillPipeline
from diffusers.utils import load_image

image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup.png")
mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup_mask.png")

repo_id = "black-forest-labs/FLUX.1-Fill-dev"
pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")

image = pipe(
    prompt="a white paper cup",
    image=image,
    mask_image=mask,
    height=1632,
    width=1232,
    max_sequence_length=512,
    generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"output.png")
```

### Canny Control

**Note:** `black-forest-labs/Flux.1-Canny-dev` is _not_ a [`ControlNetModel`] model. ControlNet models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Canny Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible. 

```python
# !pip install -U controlnet-aux
import torch
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline
from diffusers.utils import load_image

pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16).to("cuda")

prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")

processor = CannyDetector()
control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)

image = pipe(
    prompt=prompt,
    control_image=control_image,
    height=1024,
    width=1024,
    num_inference_steps=50,
    guidance_scale=30.0,
).images[0]
image.save("output.png")
```

Aryan's avatar
Aryan committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
Canny Control is also possible with a LoRA variant of this condition. The usage is as follows:

```python
# !pip install -U controlnet-aux
import torch
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline
from diffusers.utils import load_image

pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("black-forest-labs/FLUX.1-Canny-dev-lora")

prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")

processor = CannyDetector()
control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)

image = pipe(
    prompt=prompt,
    control_image=control_image,
    height=1024,
    width=1024,
    num_inference_steps=50,
    guidance_scale=30.0,
).images[0]
image.save("output.png")
```

Aryan's avatar
Aryan committed
181
182
183
184
185
### Depth Control

**Note:** `black-forest-labs/Flux.1-Depth-dev` is _not_ a ControlNet model. [`ControlNetModel`] models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Depth Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible.

```python
186
# !pip install git+https://github.com/huggingface/image_gen_aux
Aryan's avatar
Aryan committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor

pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16).to("cuda")

prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")

processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")

image = pipe(
    prompt=prompt,
    control_image=control_image,
    height=1024,
    width=1024,
    num_inference_steps=30,
    guidance_scale=10.0,
    generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
```

Aryan's avatar
Aryan committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
Depth Control is also possible with a LoRA variant of this condition. The usage is as follows:

```python
# !pip install git+https://github.com/huggingface/image_gen_aux
import torch
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor

pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora")

prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")

processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")

image = pipe(
    prompt=prompt,
    control_image=control_image,
    height=1024,
    width=1024,
    num_inference_steps=30,
    guidance_scale=10.0,
    generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
```

Aryan's avatar
Aryan committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
### Redux

* Flux Redux pipeline is an adapter for FLUX.1 base models. It can be used with both flux-dev and flux-schnell, for image-to-image generation.
* You can first use the `FluxPriorReduxPipeline` to get the `prompt_embeds` and `pooled_prompt_embeds`, and then feed them into the `FluxPipeline` for image-to-image generation.
* When use `FluxPriorReduxPipeline` with a base pipeline, you can set `text_encoder=None` and `text_encoder_2=None` in the base pipeline, in order to save VRAM.

```python
import torch
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image
device = "cuda"
dtype = torch.bfloat16


repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
repo_base = "black-forest-labs/FLUX.1-dev" 
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
pipe = FluxPipeline.from_pretrained(
    repo_base, 
    text_encoder=None,
    text_encoder_2=None,
    torch_dtype=torch.bfloat16
).to(device)

image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png")
pipe_prior_output = pipe_prior_redux(image)
images = pipe(
    guidance_scale=2.5,
    num_inference_steps=50,
    generator=torch.Generator("cpu").manual_seed(0),
    **pipe_prior_output,
).images
images[0].save("flux-redux.png")
```

Aryan's avatar
Aryan committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
### Kontext

Flux Kontext is a model that allows in-context control of the image generation process, allowing for editing, refinement, relighting, style transfer, character customization, and more.

```python
import torch
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image

pipe = FluxKontextPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
)
pipe.to("cuda")

image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png").convert("RGB")
prompt = "Make Pikachu hold a sign that says 'Black Forest Labs is awesome', yarn art style, detailed, vibrant colors"
image = pipe(
    image=image,
    prompt=prompt,
    guidance_scale=2.5,
    generator=torch.Generator().manual_seed(42),
).images[0]
image.save("flux-kontext.png")
```

Flux Kontext comes with an integrity safety checker, which should be run after the image generation step. To run the safety checker, install the official repository from [black-forest-labs/flux](https://github.com/black-forest-labs/flux) and add the following code:

```python
Aryan's avatar
Aryan committed
305
from flux.content_filters import PixtralContentFilter
Aryan's avatar
Aryan committed
306
307
308

# ... pipeline invocation to generate images

Aryan's avatar
Aryan committed
309
integrity_checker = PixtralContentFilter(torch.device("cuda"))
Aryan's avatar
Aryan committed
310
311
312
313
314
315
316
image_ = np.array(image) / 255.0
image_ = 2 * image_ - 1
image_ = torch.from_numpy(image_).to("cuda", dtype=torch.float32).unsqueeze(0).permute(0, 3, 1, 2)
if integrity_checker.test_image(image_):
    raise ValueError("Your image has been flagged. Choose another prompt/image or try again.")
```

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
## Combining Flux Turbo LoRAs with Flux Control, Fill, and Redux

We can combine Flux Turbo LoRAs with Flux Control and other pipelines like Fill and Redux to enable few-steps' inference. The example below shows how to do that for Flux Control LoRA for depth and turbo LoRA from [`ByteDance/Hyper-SD`](https://hf.co/ByteDance/Hyper-SD).

```py
from diffusers import FluxControlPipeline
from image_gen_aux import DepthPreprocessor
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
import torch

control_pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
control_pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora", adapter_name="depth")
control_pipe.load_lora_weights(
    hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
)
control_pipe.set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
control_pipe.enable_model_cpu_offload()

prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")

processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")

image = control_pipe(
    prompt=prompt,
    control_image=control_image,
    height=1024,
    width=1024,
    num_inference_steps=8,
    guidance_scale=10.0,
    generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
```

354
355
356
357
## Note about `unload_lora_weights()` when using Flux LoRAs

When unloading the Control LoRA weights, call `pipe.unload_lora_weights(reset_to_overwritten_params=True)` to reset the `pipe.transformer` completely back to its original form. The resultant pipeline can then be used with methods like [`DiffusionPipeline.from_pipe`]. More details about this argument are available in [this PR](https://github.com/huggingface/diffusers/pull/10397).

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
## IP-Adapter

<Tip>

Check out [IP-Adapter](../../../using-diffusers/ip_adapter) to learn more about how IP-Adapters work.

</Tip>

An IP-Adapter lets you prompt Flux with images, in addition to the text prompt. This is especially useful when describing complex concepts that are difficult to articulate through text alone and you have reference images.

```python
import torch
from diffusers import FluxPipeline
from diffusers.utils import load_image

pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
).to("cuda")

image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux_ip_adapter_input.jpg").resize((1024, 1024))

pipe.load_ip_adapter(
    "XLabs-AI/flux-ip-adapter",
    weight_name="ip_adapter.safetensors",
    image_encoder_pretrained_model_name_or_path="openai/clip-vit-large-patch14"
)
pipe.set_ip_adapter_scale(1.0)

image = pipe(
    width=1024,
    height=1024,
    prompt="wearing sunglasses",
    negative_prompt="",
391
    true_cfg_scale=4.0,
392
393
394
395
396
397
398
399
400
401
402
403
    generator=torch.Generator().manual_seed(4444),
    ip_adapter_image=image,
).images[0]

image.save('flux_ip_adapter_output.jpg')
```

<div class="justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux_ip_adapter_output.jpg"/>
    <figcaption class="mt-2 text-sm text-center text-gray-500">IP-Adapter examples with prompt "wearing sunglasses"</figcaption>
</div>

404
## Optimize
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
Flux is a very large model and requires ~50GB of RAM/VRAM to load all the modeling components. Enable some of the optimizations below to lower the memory requirements.

### Group offloading

[Group offloading](../../optimization/memory#group-offloading) lowers VRAM usage by offloading groups of internal layers rather than the whole model or weights. You need to use [`~hooks.apply_group_offloading`] on all the model components of a pipeline. The `offload_type` parameter allows you to toggle between block and leaf-level offloading. Setting it to `leaf_level` offloads the lowest leaf-level parameters to the CPU instead of offloading at the module-level.

On CUDA devices that support asynchronous data streaming, set `use_stream=True` to overlap data transfer and computation to accelerate inference.

> [!TIP]
> It is possible to mix block and leaf-level offloading for different components in a pipeline.

```py
import torch
from diffusers import FluxPipeline
from diffusers.hooks import apply_group_offloading

model_id = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
pipe = FluxPipeline.from_pretrained(
	model_id,
	torch_dtype=dtype,
)

apply_group_offloading(
    pipe.transformer,
    offload_type="leaf_level",
    offload_device=torch.device("cpu"),
    onload_device=torch.device("cuda"),
    use_stream=True,
)
apply_group_offloading(
    pipe.text_encoder, 
    offload_device=torch.device("cpu"),
    onload_device=torch.device("cuda"),
    offload_type="leaf_level",
    use_stream=True,
)
apply_group_offloading(
    pipe.text_encoder_2, 
    offload_device=torch.device("cpu"),
    onload_device=torch.device("cuda"),
    offload_type="leaf_level",
    use_stream=True,
)
apply_group_offloading(
    pipe.vae, 
    offload_device=torch.device("cpu"),
    onload_device=torch.device("cuda"),
    offload_type="leaf_level",
    use_stream=True,
)

prompt="A cat wearing sunglasses and working as a lifeguard at pool."

generator = torch.Generator().manual_seed(181201)
image = pipe(
    prompt,
    width=576,
    height=1024,
    num_inference_steps=30,
    generator=generator
).images[0]
image
```

### Running FP16 inference
Aryan's avatar
Aryan committed
472

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.

FP16 inference code:
```python
import torch
from diffusers import FluxPipeline

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) # can replace schnell with dev
# to run on low vram GPUs (i.e. between 4 and 32 GB VRAM)
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()

pipe.to(torch.float16) # casting here instead of in the pipeline constructor because doing so in the constructor loads all models into CPU memory at once

prompt = "A cat holding a sign that says hello world"
out = pipe(
    prompt=prompt,
    guidance_scale=0.,
    height=768,
    width=1360,
    num_inference_steps=4,
    max_sequence_length=256,
).images[0]
out.save("image.png")
```

500
### Quantization
Steven Liu's avatar
Steven Liu committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.

Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`FluxPipeline`] for inference with bitsandbytes.

```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, FluxTransformer2DModel, FluxPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel

quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    subfolder="text_encoder_2",
    quantization_config=quant_config,
    torch_dtype=torch.float16,
)

quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = FluxTransformer2DModel.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    subfolder="transformer",
    quantization_config=quant_config,
    torch_dtype=torch.float16,
)

pipeline = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
529
    text_encoder_2=text_encoder_8bit,
Steven Liu's avatar
Steven Liu committed
530
531
532
533
534
535
536
537
538
539
    transformer=transformer_8bit,
    torch_dtype=torch.float16,
    device_map="balanced",
)

prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt, guidance_scale=3.5, height=768, width=1360, num_inference_steps=50).images[0]
image.save("flux.png")
```

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
## Single File Loading for the `FluxTransformer2DModel`

The `FluxTransformer2DModel` supports loading checkpoints in the original format shipped by Black Forest Labs. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.

<Tip>
`FP8` inference can be brittle depending on the GPU type, CUDA version, and `torch` version that you are using. It is recommended that you use the `optimum-quanto` library in order to run FP8 inference on your machine.
</Tip>

The following example demonstrates how to run Flux with less than 16GB of VRAM.

First install `optimum-quanto`

```shell
pip install optimum-quanto
```

Then run the following example

```python
import torch
from diffusers import FluxTransformer2DModel, FluxPipeline
from transformers import T5EncoderModel, CLIPTextModel
from optimum.quanto import freeze, qfloat8, quantize

bfl_repo = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16

transformer = FluxTransformer2DModel.from_single_file("https://huggingface.co/Kijai/flux-fp8/blob/main/flux1-dev-fp8.safetensors", torch_dtype=dtype)
quantize(transformer, weights=qfloat8)
freeze(transformer)

text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)

pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, text_encoder_2=None, torch_dtype=dtype)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2

pipe.enable_model_cpu_offload()

prompt = "A cat holding a sign that says hello world"
image = pipe(
    prompt,
    guidance_scale=3.5,
    output_type="pil",
    num_inference_steps=20,
    generator=torch.Generator("cpu").manual_seed(0)
).images[0]

image.save("flux-fp8-dev.png")
```

Sayak Paul's avatar
Sayak Paul committed
593
594
595
596
## FluxPipeline

[[autodoc]] FluxPipeline
	- all
597
	- __call__
598
599
600
601
602
603
604
605
606
607
608
609

## FluxImg2ImgPipeline

[[autodoc]] FluxImg2ImgPipeline
	- all
	- __call__

## FluxInpaintPipeline

[[autodoc]] FluxInpaintPipeline
	- all
	- __call__
610
611
612
613
614
615
616
617
618
619
620
621
622


## FluxControlNetInpaintPipeline

[[autodoc]] FluxControlNetInpaintPipeline
	- all
	- __call__

## FluxControlNetImg2ImgPipeline

[[autodoc]] FluxControlNetImg2ImgPipeline
	- all
	- __call__
Aryan's avatar
Aryan committed
623
624
625
626
627
628
629
630
631
632
633
634

## FluxControlPipeline

[[autodoc]] FluxControlPipeline
	- all
	- __call__

## FluxControlImg2ImgPipeline

[[autodoc]] FluxControlImg2ImgPipeline
	- all
	- __call__
635
636
637
638
639
640
641
642
643
644
645
646

## FluxPriorReduxPipeline

[[autodoc]] FluxPriorReduxPipeline
	- all
	- __call__

## FluxFillPipeline

[[autodoc]] FluxFillPipeline
	- all
	- __call__