"src/vscode:/vscode.git/clone" did not exist on "0a1c13af79cc8f2128132dff0c3e075d613f7f77"
unet_2d_condition.py 17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
from dataclasses import dataclass
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21
22

from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
23
from ..utils import BaseOutput, logging
Patrick von Platen's avatar
Patrick von Platen committed
24
from .embeddings import TimestepEmbedding, Timesteps
25
from .unet_2d_blocks import (
26
27
28
29
30
31
32
33
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
    UpBlock2D,
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
34
35


36
37
38
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


39
40
41
42
43
44
45
46
47
48
49
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


Patrick von Platen's avatar
Patrick von Platen committed
50
class UNet2DConditionModel(ModelMixin, ConfigMixin):
Kashif Rasul's avatar
Kashif Rasul committed
51
52
53
54
55
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
56
    implements for all the models (such as downloading or saving, etc.)
Kashif Rasul's avatar
Kashif Rasul committed
57
58

    Parameters:
59
60
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Kashif Rasul's avatar
Kashif Rasul committed
61
62
63
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
64
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
        cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
    """

83
84
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
88
89
90
91
92
93
94
95
96
97
98
99
100
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
101
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
102
103
104
105
106
107
108
109
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: int = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
Suraj Patil's avatar
Suraj Patil committed
110
        attention_head_dim: Union[int, Tuple[int]] = 8,
111
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
112
        use_linear_projection: bool = False,
113
        num_class_embeds: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    ):
        super().__init__()

        self.sample_size = sample_size
        time_embed_dim = block_out_channels[0] * 4

        # input
        self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))

        # time
        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)

129
130
131
132
        # class embedding
        if num_class_embeds is not None:
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)

Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
136
        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

137
138
139
        if isinstance(only_cross_attention, bool):
            only_cross_attention = [only_cross_attention] * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
140
141
142
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Patrick von Platen's avatar
Patrick von Platen committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
159
                resnet_groups=norm_num_groups,
160
                cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
161
                attn_num_head_channels=attention_head_dim[i],
Patrick von Platen's avatar
Patrick von Platen committed
162
                downsample_padding=downsample_padding,
163
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
164
                use_linear_projection=use_linear_projection,
165
                only_cross_attention=only_cross_attention[i],
Patrick von Platen's avatar
Patrick von Platen committed
166
167
168
169
170
171
172
173
174
175
176
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2DCrossAttn(
            in_channels=block_out_channels[-1],
            temb_channels=time_embed_dim,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            resnet_time_scale_shift="default",
177
            cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
178
            attn_num_head_channels=attention_head_dim[-1],
Patrick von Platen's avatar
Patrick von Platen committed
179
            resnet_groups=norm_num_groups,
180
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
181
            use_linear_projection=use_linear_projection,
Patrick von Platen's avatar
Patrick von Platen committed
182
183
        )

184
185
186
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
187
188
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
Suraj Patil's avatar
Suraj Patil committed
189
        reversed_attention_head_dim = list(reversed(attention_head_dim))
190
        only_cross_attention = list(reversed(only_cross_attention))
Patrick von Platen's avatar
Patrick von Platen committed
191
192
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
193
194
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
195
196
197
198
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

199
200
201
202
203
204
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
205
206
207
208
209
210
211
212

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
213
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
214
215
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
216
                resnet_groups=norm_num_groups,
217
                cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
218
                attn_num_head_channels=reversed_attention_head_dim[i],
219
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
220
                use_linear_projection=use_linear_projection,
221
                only_cross_attention=only_cross_attention[i],
Patrick von Platen's avatar
Patrick von Platen committed
222
223
224
225
226
227
228
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
        self.conv_act = nn.SiLU()
229
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
Patrick von Platen's avatar
Patrick von Platen committed
230

231
    def set_attention_slice(self, slice_size):
232
233
234
        head_dims = self.config.attention_head_dim
        head_dims = [head_dims] if isinstance(head_dims, int) else head_dims
        if slice_size is not None and any(dim % slice_size != 0 for dim in head_dims):
235
            raise ValueError(
236
237
                f"Make sure slice_size {slice_size} is a common divisor of "
                f"the number of heads used in cross_attention: {head_dims}"
238
            )
239
        if slice_size is not None and slice_size > min(head_dims):
240
            raise ValueError(
241
242
                f"slice_size {slice_size} has to be smaller or equal to "
                f"the lowest number of heads used in cross_attention: min({head_dims}) = {min(head_dims)}"
243
244
245
246
247
248
249
250
251
252
253
254
            )

        for block in self.down_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_attention_slice(slice_size)

        self.mid_block.set_attention_slice(slice_size)

        for block in self.up_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_attention_slice(slice_size)

255
256
257
258
259
260
261
262
263
264
265
    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
        for block in self.down_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

        self.mid_block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

        for block in self.up_blocks:
            if hasattr(block, "attentions") and block.attentions is not None:
                block.set_use_memory_efficient_attention_xformers(use_memory_efficient_attention_xformers)

266
267
268
269
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
270
271
272
273
274
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
275
        class_labels: Optional[torch.Tensor] = None,
276
277
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
278
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
279
280
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
281
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
Suraj Patil's avatar
Suraj Patil committed
282
            encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states
Kashif Rasul's avatar
Kashif Rasul committed
283
284
285
286
287
288
289
290
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

Patrick von Platen's avatar
Patrick von Platen committed
305
306
307
308
309
310
311
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
312
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
Patrick von Platen's avatar
Patrick von Platen committed
313
314
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
315
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
316

317
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
318
        timesteps = timesteps.expand(sample.shape[0])
319

Patrick von Platen's avatar
Patrick von Platen committed
320
        t_emb = self.time_proj(timesteps)
321
322
323
324
325
326

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
        emb = self.time_embedding(t_emb)
Patrick von Platen's avatar
Patrick von Platen committed
327

328
329
330
331
332
333
        if self.config.num_class_embeds is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb

Patrick von Platen's avatar
Patrick von Platen committed
334
335
336
337
338
339
340
341
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
                sample, res_samples = downsample_block(
342
343
344
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Patrick von Platen's avatar
Patrick von Platen committed
345
346
347
348
349
350
351
352
353
354
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
        sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)

        # 5. up
355
356
357
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
358
359
360
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

361
362
363
364
365
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

Patrick von Platen's avatar
Patrick von Platen committed
366
367
368
369
370
371
            if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
372
                    upsample_size=upsample_size,
Patrick von Platen's avatar
Patrick von Platen committed
373
374
                )
            else:
375
376
377
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
Patrick von Platen's avatar
Patrick von Platen committed
378
        # 6. post-process
379
        sample = self.conv_norm_out(sample)
Patrick von Platen's avatar
Patrick von Platen committed
380
381
382
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

383
384
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
385

386
        return UNet2DConditionOutput(sample=sample)