unet_3d_blocks.py 54.1 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from typing import Any, Dict, Optional, Tuple, Union
Dhruv Nair's avatar
Dhruv Nair committed
16

17
18
19
import torch
from torch import nn

20
from ...utils import deprecate, is_torch_version, logging
21
22
23
from ...utils.torch_utils import apply_freeu
from ..attention import Attention
from ..resnet import (
Suraj Patil's avatar
Suraj Patil committed
24
25
26
27
28
29
    Downsample2D,
    ResnetBlock2D,
    SpatioTemporalResBlock,
    TemporalConvLayer,
    Upsample2D,
)
30
31
from ..transformers.transformer_2d import Transformer2DModel
from ..transformers.transformer_temporal import (
Suraj Patil's avatar
Suraj Patil committed
32
33
34
    TransformerSpatioTemporalModel,
    TransformerTemporalModel,
)
35
36
37
38
39
40
41
from .unet_motion_model import (
    CrossAttnDownBlockMotion,
    CrossAttnUpBlockMotion,
    DownBlockMotion,
    UNetMidBlockCrossAttnMotion,
    UpBlockMotion,
)
42
43


44
45
46
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
class DownBlockMotion(DownBlockMotion):
    def __init__(self, *args, **kwargs):
        deprecation_message = "Importing `DownBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import DownBlockMotion` instead."
        deprecate("DownBlockMotion", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)


class CrossAttnDownBlockMotion(CrossAttnDownBlockMotion):
    def __init__(self, *args, **kwargs):
        deprecation_message = "Importing `CrossAttnDownBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import CrossAttnDownBlockMotion` instead."
        deprecate("CrossAttnDownBlockMotion", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)


class UpBlockMotion(UpBlockMotion):
    def __init__(self, *args, **kwargs):
        deprecation_message = "Importing `UpBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import UpBlockMotion` instead."
        deprecate("UpBlockMotion", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)


class CrossAttnUpBlockMotion(CrossAttnUpBlockMotion):
    def __init__(self, *args, **kwargs):
        deprecation_message = "Importing `CrossAttnUpBlockMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import CrossAttnUpBlockMotion` instead."
        deprecate("CrossAttnUpBlockMotion", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)


class UNetMidBlockCrossAttnMotion(UNetMidBlockCrossAttnMotion):
    def __init__(self, *args, **kwargs):
        deprecation_message = "Importing `UNetMidBlockCrossAttnMotion` from `diffusers.models.unets.unet_3d_blocks` is deprecated and this will be removed in a future version. Please use `from diffusers.models.unets.unet_motion_model import UNetMidBlockCrossAttnMotion` instead."
        deprecate("UNetMidBlockCrossAttnMotion", "1.0.0", deprecation_message)
        super().__init__(*args, **kwargs)


82
def get_down_block(
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    down_block_type: str,
    num_layers: int,
    in_channels: int,
    out_channels: int,
    temb_channels: int,
    add_downsample: bool,
    resnet_eps: float,
    resnet_act_fn: str,
    num_attention_heads: int,
    resnet_groups: Optional[int] = None,
    cross_attention_dim: Optional[int] = None,
    downsample_padding: Optional[int] = None,
    dual_cross_attention: bool = False,
    use_linear_projection: bool = True,
    only_cross_attention: bool = False,
    upcast_attention: bool = False,
    resnet_time_scale_shift: str = "default",
    temporal_num_attention_heads: int = 8,
    temporal_max_seq_length: int = 32,
102
103
104
    transformer_layers_per_block: Union[int, Tuple[int]] = 1,
    temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
    dropout: float = 0.0,
Suraj Patil's avatar
Suraj Patil committed
105
106
107
108
109
110
) -> Union[
    "DownBlock3D",
    "CrossAttnDownBlock3D",
    "DownBlockSpatioTemporal",
    "CrossAttnDownBlockSpatioTemporal",
]:
111
112
113
114
115
116
117
118
119
120
121
122
    if down_block_type == "DownBlock3D":
        return DownBlock3D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            resnet_time_scale_shift=resnet_time_scale_shift,
123
            dropout=dropout,
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        )
    elif down_block_type == "CrossAttnDownBlock3D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
        return CrossAttnDownBlock3D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            cross_attention_dim=cross_attention_dim,
139
            num_attention_heads=num_attention_heads,
140
141
142
143
144
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
145
            dropout=dropout,
146
        )
Suraj Patil's avatar
Suraj Patil committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    elif down_block_type == "DownBlockSpatioTemporal":
        # added for SDV
        return DownBlockSpatioTemporal(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
        )
    elif down_block_type == "CrossAttnDownBlockSpatioTemporal":
        # added for SDV
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockSpatioTemporal")
        return CrossAttnDownBlockSpatioTemporal(
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            num_layers=num_layers,
            transformer_layers_per_block=transformer_layers_per_block,
            add_downsample=add_downsample,
            cross_attention_dim=cross_attention_dim,
            num_attention_heads=num_attention_heads,
        )
Dhruv Nair's avatar
Dhruv Nair committed
170

171
172
173
174
    raise ValueError(f"{down_block_type} does not exist.")


def get_up_block(
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    up_block_type: str,
    num_layers: int,
    in_channels: int,
    out_channels: int,
    prev_output_channel: int,
    temb_channels: int,
    add_upsample: bool,
    resnet_eps: float,
    resnet_act_fn: str,
    num_attention_heads: int,
    resolution_idx: Optional[int] = None,
    resnet_groups: Optional[int] = None,
    cross_attention_dim: Optional[int] = None,
    dual_cross_attention: bool = False,
    use_linear_projection: bool = True,
    only_cross_attention: bool = False,
    upcast_attention: bool = False,
    resnet_time_scale_shift: str = "default",
    temporal_num_attention_heads: int = 8,
    temporal_cross_attention_dim: Optional[int] = None,
    temporal_max_seq_length: int = 32,
196
197
    transformer_layers_per_block: Union[int, Tuple[int]] = 1,
    temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
Suraj Patil's avatar
Suraj Patil committed
198
199
200
201
202
203
204
    dropout: float = 0.0,
) -> Union[
    "UpBlock3D",
    "CrossAttnUpBlock3D",
    "UpBlockSpatioTemporal",
    "CrossAttnUpBlockSpatioTemporal",
]:
205
206
207
208
209
210
211
212
213
214
215
216
    if up_block_type == "UpBlock3D":
        return UpBlock3D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            resnet_time_scale_shift=resnet_time_scale_shift,
217
            resolution_idx=resolution_idx,
218
            dropout=dropout,
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        )
    elif up_block_type == "CrossAttnUpBlock3D":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
        return CrossAttnUpBlock3D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
234
            num_attention_heads=num_attention_heads,
235
236
237
238
239
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
            upcast_attention=upcast_attention,
            resnet_time_scale_shift=resnet_time_scale_shift,
240
            resolution_idx=resolution_idx,
241
            dropout=dropout,
242
        )
Suraj Patil's avatar
Suraj Patil committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    elif up_block_type == "UpBlockSpatioTemporal":
        # added for SDV
        return UpBlockSpatioTemporal(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            resolution_idx=resolution_idx,
            add_upsample=add_upsample,
        )
    elif up_block_type == "CrossAttnUpBlockSpatioTemporal":
        # added for SDV
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockSpatioTemporal")
        return CrossAttnUpBlockSpatioTemporal(
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            num_layers=num_layers,
            transformer_layers_per_block=transformer_layers_per_block,
            add_upsample=add_upsample,
            cross_attention_dim=cross_attention_dim,
            num_attention_heads=num_attention_heads,
            resolution_idx=resolution_idx,
        )

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    raise ValueError(f"{up_block_type} does not exist.")


class UNetMidBlock3DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
286
287
288
289
290
291
        num_attention_heads: int = 1,
        output_scale_factor: float = 1.0,
        cross_attention_dim: int = 1280,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = True,
        upcast_attention: bool = False,
292
293
294
295
    ):
        super().__init__()

        self.has_cross_attention = True
296
        self.num_attention_heads = num_attention_heads
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        temp_convs = [
            TemporalConvLayer(
                in_channels,
                in_channels,
                dropout=0.1,
Dhruv Nair's avatar
Dhruv Nair committed
319
                norm_num_groups=resnet_groups,
320
321
322
323
324
325
326
327
            )
        ]
        attentions = []
        temp_attentions = []

        for _ in range(num_layers):
            attentions.append(
                Transformer2DModel(
328
329
                    in_channels // num_attention_heads,
                    num_attention_heads,
330
331
332
333
334
335
336
337
338
339
                    in_channels=in_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    use_linear_projection=use_linear_projection,
                    upcast_attention=upcast_attention,
                )
            )
            temp_attentions.append(
                TransformerTemporalModel(
340
341
                    in_channels // num_attention_heads,
                    num_attention_heads,
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
                    in_channels=in_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                )
            )
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                TemporalConvLayer(
                    in_channels,
                    in_channels,
                    dropout=0.1,
Dhruv Nair's avatar
Dhruv Nair committed
367
                    norm_num_groups=resnet_groups,
368
369
370
371
372
373
374
375
376
377
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)
        self.attentions = nn.ModuleList(attentions)
        self.temp_attentions = nn.ModuleList(temp_attentions)

    def forward(
        self,
378
379
380
381
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
382
383
        num_frames: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
384
    ) -> torch.Tensor:
385
386
387
388
389
390
391
392
393
        hidden_states = self.resnets[0](hidden_states, temb)
        hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
        for attn, temp_attn, resnet, temp_conv in zip(
            self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
        ):
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
394
395
                return_dict=False,
            )[0]
396
            hidden_states = temp_attn(
Suraj Patil's avatar
Suraj Patil committed
397
398
399
400
                hidden_states,
                num_frames=num_frames,
                cross_attention_kwargs=cross_attention_kwargs,
                return_dict=False,
401
            )[0]
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
            hidden_states = resnet(hidden_states, temb)
            hidden_states = temp_conv(hidden_states, num_frames=num_frames)

        return hidden_states


class CrossAttnDownBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
421
422
423
424
425
426
427
428
429
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        downsample_padding: int = 1,
        add_downsample: bool = True,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
430
431
432
433
434
435
436
437
    ):
        super().__init__()
        resnets = []
        attentions = []
        temp_attentions = []
        temp_convs = []

        self.has_cross_attention = True
438
        self.num_attention_heads = num_attention_heads
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                TemporalConvLayer(
                    out_channels,
                    out_channels,
                    dropout=0.1,
Dhruv Nair's avatar
Dhruv Nair committed
461
                    norm_num_groups=resnet_groups,
462
463
464
465
                )
            )
            attentions.append(
                Transformer2DModel(
466
467
                    out_channels // num_attention_heads,
                    num_attention_heads,
468
469
470
471
472
473
474
475
476
477
478
                    in_channels=out_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    use_linear_projection=use_linear_projection,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,
                )
            )
            temp_attentions.append(
                TransformerTemporalModel(
479
480
                    out_channels // num_attention_heads,
                    num_attention_heads,
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
                    in_channels=out_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                )
            )
        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)
        self.attentions = nn.ModuleList(attentions)
        self.temp_attentions = nn.ModuleList(temp_attentions)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
Suraj Patil's avatar
Suraj Patil committed
496
497
498
499
500
                        out_channels,
                        use_conv=True,
                        out_channels=out_channels,
                        padding=downsample_padding,
                        name="op",
501
502
503
504
505
506
507
508
509
510
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
511
512
513
514
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
515
516
        num_frames: int = 1,
        cross_attention_kwargs: Dict[str, Any] = None,
517
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
518
519
520
521
522
523
524
525
526
527
528
529
        # TODO(Patrick, William) - attention mask is not used
        output_states = ()

        for resnet, temp_conv, attn, temp_attn in zip(
            self.resnets, self.temp_convs, self.attentions, self.temp_attentions
        ):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = temp_conv(hidden_states, num_frames=num_frames)
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
530
531
                return_dict=False,
            )[0]
532
            hidden_states = temp_attn(
Suraj Patil's avatar
Suraj Patil committed
533
534
535
536
                hidden_states,
                num_frames=num_frames,
                cross_attention_kwargs=cross_attention_kwargs,
                return_dict=False,
537
            )[0]
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


class DownBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
563
564
565
        output_scale_factor: float = 1.0,
        add_downsample: bool = True,
        downsample_padding: int = 1,
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    ):
        super().__init__()
        resnets = []
        temp_convs = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlock2D(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                TemporalConvLayer(
                    out_channels,
                    out_channels,
                    dropout=0.1,
Dhruv Nair's avatar
Dhruv Nair committed
592
                    norm_num_groups=resnet_groups,
593
594
595
596
597
598
599
600
601
602
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
Suraj Patil's avatar
Suraj Patil committed
603
604
605
606
607
                        out_channels,
                        use_conv=True,
                        out_channels=out_channels,
                        padding=downsample_padding,
                        name="op",
608
609
610
611
612
613
614
615
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

616
    def forward(
Suraj Patil's avatar
Suraj Patil committed
617
        self,
618
619
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
Suraj Patil's avatar
Suraj Patil committed
620
        num_frames: int = 1,
621
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
        output_states = ()

        for resnet, temp_conv in zip(self.resnets, self.temp_convs):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = temp_conv(hidden_states, num_frames=num_frames)

            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


class CrossAttnUpBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
653
654
655
656
657
658
659
660
661
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        resolution_idx: Optional[int] = None,
662
663
664
665
666
667
668
669
    ):
        super().__init__()
        resnets = []
        temp_convs = []
        attentions = []
        temp_attentions = []

        self.has_cross_attention = True
670
        self.num_attention_heads = num_attention_heads
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                TemporalConvLayer(
                    out_channels,
                    out_channels,
                    dropout=0.1,
Dhruv Nair's avatar
Dhruv Nair committed
695
                    norm_num_groups=resnet_groups,
696
697
698
699
                )
            )
            attentions.append(
                Transformer2DModel(
700
701
                    out_channels // num_attention_heads,
                    num_attention_heads,
702
703
704
705
706
707
708
709
710
711
712
                    in_channels=out_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    use_linear_projection=use_linear_projection,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,
                )
            )
            temp_attentions.append(
                TransformerTemporalModel(
713
714
                    out_channels // num_attention_heads,
                    num_attention_heads,
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
                    in_channels=out_channels,
                    num_layers=1,
                    cross_attention_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                )
            )
        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)
        self.attentions = nn.ModuleList(attentions)
        self.temp_attentions = nn.ModuleList(temp_attentions)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
732
        self.resolution_idx = resolution_idx
733
734
735

    def forward(
        self,
736
737
738
739
        hidden_states: torch.Tensor,
        res_hidden_states_tuple: Tuple[torch.Tensor, ...],
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
740
        upsample_size: Optional[int] = None,
741
        attention_mask: Optional[torch.Tensor] = None,
742
743
        num_frames: int = 1,
        cross_attention_kwargs: Dict[str, Any] = None,
744
    ) -> torch.Tensor:
745
746
747
748
749
750
751
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )

752
753
754
755
756
757
758
        # TODO(Patrick, William) - attention mask is not used
        for resnet, temp_conv, attn, temp_attn in zip(
            self.resnets, self.temp_convs, self.attentions, self.temp_attentions
        ):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
759
760
761
762
763
764
765
766
767
768
769
770
771

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

772
773
774
775
776
777
778
779
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = temp_conv(hidden_states, num_frames=num_frames)
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
780
781
                return_dict=False,
            )[0]
782
            hidden_states = temp_attn(
Suraj Patil's avatar
Suraj Patil committed
783
784
785
786
                hidden_states,
                num_frames=num_frames,
                cross_attention_kwargs=cross_attention_kwargs,
                return_dict=False,
787
            )[0]
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states


class UpBlock3D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
810
811
812
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        resolution_idx: Optional[int] = None,
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
    ):
        super().__init__()
        resnets = []
        temp_convs = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlock2D(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            temp_convs.append(
                TemporalConvLayer(
                    out_channels,
                    out_channels,
                    dropout=0.1,
Dhruv Nair's avatar
Dhruv Nair committed
841
                    norm_num_groups=resnet_groups,
842
843
844
845
846
847
848
849
850
851
852
853
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.temp_convs = nn.ModuleList(temp_convs)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
854
        self.resolution_idx = resolution_idx
855

856
857
    def forward(
        self,
858
859
860
        hidden_states: torch.Tensor,
        res_hidden_states_tuple: Tuple[torch.Tensor, ...],
        temb: Optional[torch.Tensor] = None,
861
862
        upsample_size: Optional[int] = None,
        num_frames: int = 1,
863
    ) -> torch.Tensor:
864
865
866
867
868
869
        is_freeu_enabled = (
            getattr(self, "s1", None)
            and getattr(self, "s2", None)
            and getattr(self, "b1", None)
            and getattr(self, "b2", None)
        )
870
871
872
873
        for resnet, temp_conv in zip(self.resnets, self.temp_convs):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
874
875
876
877
878
879
880
881
882
883
884
885
886

            # FreeU: Only operate on the first two stages
            if is_freeu_enabled:
                hidden_states, res_hidden_states = apply_freeu(
                    self.resolution_idx,
                    hidden_states,
                    res_hidden_states,
                    s1=self.s1,
                    s2=self.s2,
                    b1=self.b1,
                    b2=self.b2,
                )

887
888
889
890
891
892
893
894
895
896
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = temp_conv(hidden_states, num_frames=num_frames)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states
Dhruv Nair's avatar
Dhruv Nair committed
897
898


Suraj Patil's avatar
Suraj Patil committed
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
class MidBlockTemporalDecoder(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        attention_head_dim: int = 512,
        num_layers: int = 1,
        upcast_attention: bool = False,
    ):
        super().__init__()

        resnets = []
        attentions = []
        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels
            resnets.append(
                SpatioTemporalResBlock(
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=1e-6,
                    temporal_eps=1e-5,
                    merge_factor=0.0,
                    merge_strategy="learned",
                    switch_spatial_to_temporal_mix=True,
                )
            )

        attentions.append(
            Attention(
                query_dim=in_channels,
                heads=in_channels // attention_head_dim,
                dim_head=attention_head_dim,
                eps=1e-6,
                upcast_attention=upcast_attention,
                norm_num_groups=32,
                bias=True,
                residual_connection=True,
            )
        )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

    def forward(
        self,
945
946
        hidden_states: torch.Tensor,
        image_only_indicator: torch.Tensor,
Suraj Patil's avatar
Suraj Patil committed
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    ):
        hidden_states = self.resnets[0](
            hidden_states,
            image_only_indicator=image_only_indicator,
        )
        for resnet, attn in zip(self.resnets[1:], self.attentions):
            hidden_states = attn(hidden_states)
            hidden_states = resnet(
                hidden_states,
                image_only_indicator=image_only_indicator,
            )

        return hidden_states


class UpBlockTemporalDecoder(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        num_layers: int = 1,
        add_upsample: bool = True,
    ):
        super().__init__()
        resnets = []
        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
                SpatioTemporalResBlock(
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=1e-6,
                    temporal_eps=1e-5,
                    merge_factor=0.0,
                    merge_strategy="learned",
                    switch_spatial_to_temporal_mix=True,
                )
            )
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(
        self,
996
997
998
        hidden_states: torch.Tensor,
        image_only_indicator: torch.Tensor,
    ) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
        for resnet in self.resnets:
            hidden_states = resnet(
                hidden_states,
                image_only_indicator=image_only_indicator,
            )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class UNetMidBlockSpatioTemporal(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
    ):
        super().__init__()

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads

        # support for variable transformer layers per block
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

        # there is always at least one resnet
        resnets = [
            SpatioTemporalResBlock(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=1e-5,
            )
        ]
        attentions = []

        for i in range(num_layers):
            attentions.append(
                TransformerSpatioTemporalModel(
                    num_attention_heads,
                    in_channels // num_attention_heads,
                    in_channels=in_channels,
                    num_layers=transformer_layers_per_block[i],
                    cross_attention_dim=cross_attention_dim,
                )
            )

            resnets.append(
                SpatioTemporalResBlock(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=1e-5,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        self.gradient_checkpointing = False

    def forward(
        self,
1069
1070
1071
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
Suraj Patil's avatar
Suraj Patil committed
1072
        image_only_indicator: Optional[torch.Tensor] = None,
1073
    ) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
1074
1075
1076
1077
1078
1079
1080
        hidden_states = self.resnets[0](
            hidden_states,
            temb,
            image_only_indicator=image_only_indicator,
        )

        for attn, resnet in zip(self.attentions, self.resnets[1:]):
1081
            if torch.is_grad_enabled() and self.gradient_checkpointing:  # TODO
Suraj Patil's avatar
Suraj Patil committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    image_only_indicator=image_only_indicator,
                    return_dict=False,
                )[0]
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    image_only_indicator,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    image_only_indicator=image_only_indicator,
                    return_dict=False,
                )[0]
                hidden_states = resnet(
                    hidden_states,
                    temb,
                    image_only_indicator=image_only_indicator,
                )

        return hidden_states


class DownBlockSpatioTemporal(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        num_layers: int = 1,
        add_downsample: bool = True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                SpatioTemporalResBlock(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=1e-5,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        out_channels,
                        use_conv=True,
                        out_channels=out_channels,
                        name="op",
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
1165
1166
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
Suraj Patil's avatar
Suraj Patil committed
1167
        image_only_indicator: Optional[torch.Tensor] = None,
1168
    ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
Suraj Patil's avatar
Suraj Patil committed
1169
1170
        output_states = ()
        for resnet in self.resnets:
1171
            if torch.is_grad_enabled() and self.gradient_checkpointing:
Suraj Patil's avatar
Suraj Patil committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet),
                        hidden_states,
                        temb,
                        image_only_indicator,
                        use_reentrant=False,
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet),
                        hidden_states,
                        temb,
                        image_only_indicator,
                    )
            else:
                hidden_states = resnet(
                    hidden_states,
                    temb,
                    image_only_indicator=image_only_indicator,
                )

            output_states = output_states + (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states = output_states + (hidden_states,)

        return hidden_states, output_states


class CrossAttnDownBlockSpatioTemporal(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        add_downsample: bool = True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                SpatioTemporalResBlock(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=1e-6,
                )
            )
            attentions.append(
                TransformerSpatioTemporalModel(
                    num_attention_heads,
                    out_channels // num_attention_heads,
                    in_channels=out_channels,
                    num_layers=transformer_layers_per_block[i],
                    cross_attention_dim=cross_attention_dim,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
                        out_channels,
                        use_conv=True,
                        out_channels=out_channels,
                        padding=1,
                        name="op",
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
1275
1276
1277
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
Suraj Patil's avatar
Suraj Patil committed
1278
        image_only_indicator: Optional[torch.Tensor] = None,
1279
    ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
Suraj Patil's avatar
Suraj Patil committed
1280
1281
1282
1283
        output_states = ()

        blocks = list(zip(self.resnets, self.attentions))
        for resnet, attn in blocks:
1284
            if torch.is_grad_enabled() and self.gradient_checkpointing:  # TODO
Suraj Patil's avatar
Suraj Patil committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    image_only_indicator,
                    **ckpt_kwargs,
                )

                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    image_only_indicator=image_only_indicator,
                    return_dict=False,
                )[0]
            else:
                hidden_states = resnet(
                    hidden_states,
                    temb,
                    image_only_indicator=image_only_indicator,
                )
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    image_only_indicator=image_only_indicator,
                    return_dict=False,
                )[0]

            output_states = output_states + (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states = output_states + (hidden_states,)

        return hidden_states, output_states


class UpBlockSpatioTemporal(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        resolution_idx: Optional[int] = None,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        add_upsample: bool = True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                SpatioTemporalResBlock(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
        self.resolution_idx = resolution_idx

    def forward(
        self,
1374
1375
1376
        hidden_states: torch.Tensor,
        res_hidden_states_tuple: Tuple[torch.Tensor, ...],
        temb: Optional[torch.Tensor] = None,
Suraj Patil's avatar
Suraj Patil committed
1377
        image_only_indicator: Optional[torch.Tensor] = None,
1378
    ) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
1379
1380
1381
1382
1383
1384
1385
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]

            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1386
            if torch.is_grad_enabled() and self.gradient_checkpointing:
Suraj Patil's avatar
Suraj Patil committed
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet),
                        hidden_states,
                        temb,
                        image_only_indicator,
                        use_reentrant=False,
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet),
                        hidden_states,
                        temb,
                        image_only_indicator,
                    )
            else:
                hidden_states = resnet(
                    hidden_states,
                    temb,
                    image_only_indicator=image_only_indicator,
                )

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


class CrossAttnUpBlockSpatioTemporal(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        resolution_idx: Optional[int] = None,
        num_layers: int = 1,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        resnet_eps: float = 1e-6,
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        add_upsample: bool = True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * num_layers

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                SpatioTemporalResBlock(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                )
            )
            attentions.append(
                TransformerSpatioTemporalModel(
                    num_attention_heads,
                    out_channels // num_attention_heads,
                    in_channels=out_channels,
                    num_layers=transformer_layers_per_block[i],
                    cross_attention_dim=cross_attention_dim,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False
        self.resolution_idx = resolution_idx

    def forward(
        self,
1483
1484
1485
1486
        hidden_states: torch.Tensor,
        res_hidden_states_tuple: Tuple[torch.Tensor, ...],
        temb: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
Suraj Patil's avatar
Suraj Patil committed
1487
        image_only_indicator: Optional[torch.Tensor] = None,
1488
    ) -> torch.Tensor:
Suraj Patil's avatar
Suraj Patil committed
1489
1490
1491
1492
1493
1494
1495
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]

            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1496
            if torch.is_grad_enabled() and self.gradient_checkpointing:  # TODO
Suraj Patil's avatar
Suraj Patil committed
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    image_only_indicator,
                    **ckpt_kwargs,
                )
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    image_only_indicator=image_only_indicator,
                    return_dict=False,
                )[0]
            else:
                hidden_states = resnet(
                    hidden_states,
                    temb,
                    image_only_indicator=image_only_indicator,
                )
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    image_only_indicator=image_only_indicator,
                    return_dict=False,
                )[0]

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states