"sgl-kernel/python/vscode:/vscode.git/clone" did not exist on "1fea998a452ff8e0ea85539fbb082e2d538b244a"
unet_3d_condition.py 33.5 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
# Copyright 2025 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
# Copyright 2025 The ModelScope Team.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

16
17
18
19
20
21
22
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint

23
24
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import UNet2DConditionLoadersMixin
25
from ...utils import BaseOutput, logging
26
27
from ..activations import get_activation
from ..attention_processor import (
28
29
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
30
    Attention,
31
32
33
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
34
    FusedAttnProcessor2_0,
35
)
36
37
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
38
from ..transformers.transformer_temporal import TransformerTemporalModel
39
40
41
42
43
44
45
46
47
48
49
50
51
from .unet_3d_blocks import (
    UNetMidBlock3DCrossAttn,
    get_down_block,
    get_up_block,
)


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class UNet3DConditionOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
52
53
    The output of [`UNet3DConditionModel`].

54
    Args:
55
        sample (`torch.Tensor` of shape `(batch_size, num_channels, num_frames, height, width)`):
Steven Liu's avatar
Steven Liu committed
56
            The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
57
58
    """

59
    sample: torch.Tensor
60
61


62
class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
63
    r"""
Steven Liu's avatar
Steven Liu committed
64
65
    A conditional 3D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
    shaped output.
66

Steven Liu's avatar
Steven Liu committed
67
68
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
69
70
71
72
73
74

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
75
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D")`):
76
            The tuple of downsample blocks to use.
77
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D")`):
78
79
80
81
82
83
84
85
            The tuple of upsample blocks to use.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
Steven Liu's avatar
Steven Liu committed
86
            If `None`, normalization and activation layers is skipped in post-processing.
87
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
88
89
        cross_attention_dim (`int`, *optional*, defaults to 1024): The dimension of the cross attention features.
        attention_head_dim (`int`, *optional*, defaults to 64): The dimension of the attention heads.
90
        num_attention_heads (`int`, *optional*): The number of attention heads.
91
92
        time_cond_proj_dim (`int`, *optional*, defaults to `None`):
            The dimension of `cond_proj` layer in the timestep embedding.
93
94
95
    """

    _supports_gradient_checkpointing = False
Aryan's avatar
Aryan committed
96
    _skip_layerwise_casting_patterns = ["norm", "time_embedding"]
97
98
99
100
101
102
103

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
104
        down_block_types: Tuple[str, ...] = (
105
106
107
108
109
            "CrossAttnDownBlock3D",
            "CrossAttnDownBlock3D",
            "CrossAttnDownBlock3D",
            "DownBlock3D",
        ),
110
111
112
113
114
115
116
        up_block_types: Tuple[str, ...] = (
            "UpBlock3D",
            "CrossAttnUpBlock3D",
            "CrossAttnUpBlock3D",
            "CrossAttnUpBlock3D",
        ),
        block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
117
118
119
120
121
122
123
124
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: Optional[int] = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1024,
        attention_head_dim: Union[int, Tuple[int]] = 64,
125
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
126
        time_cond_proj_dim: Optional[int] = None,
127
128
129
130
131
    ):
        super().__init__()

        self.sample_size = sample_size

132
133
134
135
136
        if num_attention_heads is not None:
            raise NotImplementedError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
            )

137
138
139
140
141
142
143
144
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

145
146
147
148
149
150
151
152
153
154
155
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

156
        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
157
            raise ValueError(
158
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            )

        # input
        conv_in_kernel = 3
        conv_out_kernel = 3
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )

        # time
        time_embed_dim = block_out_channels[0] * 4
        self.time_proj = Timesteps(block_out_channels[0], True, 0)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
178
            cond_proj_dim=time_cond_proj_dim,
179
180
181
182
183
184
185
        )

        self.transformer_in = TransformerTemporalModel(
            num_attention_heads=8,
            attention_head_dim=attention_head_dim,
            in_channels=block_out_channels[0],
            num_layers=1,
Dhruv Nair's avatar
Dhruv Nair committed
186
            norm_num_groups=norm_num_groups,
187
188
189
190
191
192
        )

        # class embedding
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

193
194
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
214
                num_attention_heads=num_attention_heads[i],
215
216
217
218
219
220
221
222
223
224
225
226
227
                downsample_padding=downsample_padding,
                dual_cross_attention=False,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock3DCrossAttn(
            in_channels=block_out_channels[-1],
            temb_channels=time_embed_dim,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            cross_attention_dim=cross_attention_dim,
228
            num_attention_heads=num_attention_heads[-1],
229
230
231
232
233
234
235
236
237
            resnet_groups=norm_num_groups,
            dual_cross_attention=False,
        )

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
238
        reversed_num_attention_heads = list(reversed(num_attention_heads))
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
267
                num_attention_heads=reversed_num_attention_heads[i],
268
                dual_cross_attention=False,
269
                resolution_idx=i,
270
271
272
273
274
275
276
277
278
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
279
            self.conv_act = get_activation("silu")
280
281
282
283
284
285
286
287
288
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )

289
    @property
290
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
291
292
293
294
295
296
297
298
299
300
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
301
            if hasattr(module, "get_processor"):
302
                processors[f"{name}.processor"] = module.get_processor()
303
304
305
306
307
308
309
310
311
312
313

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

314
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
315
    def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
316
317
318
        r"""
        Enable sliced attention computation.

Steven Liu's avatar
Steven Liu committed
319
320
        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.
321
322
323

        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
Steven Liu's avatar
Steven Liu committed
324
325
326
327
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
328
329
330
        """
        sliceable_head_dims = []

331
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
332
333
334
335
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
336
                fn_recursive_retrieve_sliceable_dims(child)
337
338
339

        # retrieve number of attention layers
        for module in self.children():
340
            fn_recursive_retrieve_sliceable_dims(module)
341

342
        num_sliceable_layers = len(sliceable_head_dims)
343
344
345
346
347
348
349

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
350
            slice_size = num_sliceable_layers * [1]
351

352
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )

        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)

380
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
381
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
382
        r"""
Steven Liu's avatar
Steven Liu committed
383
384
        Sets the attention processor to use to compute attention.

385
        Parameters:
Steven Liu's avatar
Steven Liu committed
386
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
387
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
388
389
390
391
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
392
393
394
395
396
397
398
399
400
401
402
403
404

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
405
                    module.set_processor(processor)
406
                else:
407
                    module.set_processor(processor.pop(f"{name}.processor"))
408
409
410
411
412
413
414

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

415
    def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
        """
        Sets the attention processor to use [feed forward
        chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

        Parameters:
            chunk_size (`int`, *optional*):
                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
                over each tensor of dim=`dim`.
            dim (`int`, *optional*, defaults to `0`):
                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
                or dim=1 (sequence length).
        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, chunk_size, dim)

    def disable_forward_chunking(self):
        def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.children():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.children():
            fn_recursive_feed_forward(module, None, 0)

455
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
456
457
458
459
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
460
461
462
463
464
465
466
467
468
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

469
        self.set_attn_processor(processor)
470

471
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
472
    def enable_freeu(self, s1, s2, b1, b2):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
473
        r"""Enables the FreeU mechanism from https://huggingface.co/papers/2309.11497.
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

        The suffixes after the scaling factors represent the stage blocks where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
        are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate the "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        for i, upsample_block in enumerate(self.up_blocks):
            setattr(upsample_block, "s1", s1)
            setattr(upsample_block, "s2", s2)
            setattr(upsample_block, "b1", b1)
            setattr(upsample_block, "b2", b2)

496
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
497
498
499
500
501
    def disable_freeu(self):
        """Disables the FreeU mechanism."""
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for i, upsample_block in enumerate(self.up_blocks):
            for k in freeu_keys:
502
                if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
503
504
                    setattr(upsample_block, k, None)

505
506
507
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """
508
509
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
510

Steven Liu's avatar
Steven Liu committed
511
        > [!WARNING] > This API is 🧪 experimental.
512
513
514
515
516
517
518
519
520
521
522
523
524
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

525
526
        self.set_attn_processor(FusedAttnProcessor2_0())

527
528
529
530
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

Steven Liu's avatar
Steven Liu committed
531
        > [!WARNING] > This API is 🧪 experimental.
532
533
534
535
536

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

537
538
    def forward(
        self,
539
        sample: torch.Tensor,
540
541
542
543
544
545
546
547
548
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        return_dict: bool = True,
549
    ) -> Union[UNet3DConditionOutput, Tuple[torch.Tensor]]:
550
        r"""
Steven Liu's avatar
Steven Liu committed
551
552
        The [`UNet3DConditionModel`] forward method.

553
        Args:
554
            sample (`torch.Tensor`):
555
                The noisy input tensor with the following shape `(batch, num_channels, num_frames, height, width`.
556
557
            timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.Tensor`):
Steven Liu's avatar
Steven Liu committed
558
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
                Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
                through the `self.time_embedding` layer to obtain the timestep embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
                A tuple of tensors that if specified are added to the residuals of down unet blocks.
            mid_block_additional_residual: (`torch.Tensor`, *optional*):
                A tensor that if specified is added to the residual of the middle unet block.
576
            return_dict (`bool`, *optional*, defaults to `True`):
577
                Whether or not to return a [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] instead of a plain
Steven Liu's avatar
Steven Liu committed
578
                tuple.
579
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
580
                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
581
582

        Returns:
583
584
585
            [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] or `tuple`:
                If `return_dict` is True, an [`~models.unets.unet_3d_condition.UNet3DConditionOutput`] is returned,
                otherwise a `tuple` is returned where the first element is the sample tensor.
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
612
            is_npu = sample.device.type == "npu"
613
            if isinstance(timestep, float):
614
                dtype = torch.float32 if (is_mps or is_npu) else torch.float64
615
            else:
616
                dtype = torch.int32 if (is_mps or is_npu) else torch.int64
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        num_frames = sample.shape[2]
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)

        emb = self.time_embedding(t_emb, timestep_cond)
633
634
635
636
        emb = emb.repeat_interleave(num_frames, dim=0, output_size=emb.shape[0] * num_frames)
        encoder_hidden_states = encoder_hidden_states.repeat_interleave(
            num_frames, dim=0, output_size=encoder_hidden_states.shape[0] * num_frames
        )
637
638
639
640
641

        # 2. pre-process
        sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
        sample = self.conv_in(sample)

642
        sample = self.transformer_in(
643
644
645
646
647
            sample,
            num_frames=num_frames,
            cross_attention_kwargs=cross_attention_kwargs,
            return_dict=False,
        )[0]
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)

            down_block_res_samples += res_samples

        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
                new_down_block_res_samples += (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # 4. mid
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                num_frames=num_frames,
                cross_attention_kwargs=cross_attention_kwargs,
            )

        if mid_block_additional_residual is not None:
            sample = sample + mid_block_additional_residual

        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    num_frames=num_frames,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    num_frames=num_frames,
                )

        # 6. post-process
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)

        sample = self.conv_out(sample)

        # reshape to (batch, channel, framerate, width, height)
        sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)

        if not return_dict:
            return (sample,)

        return UNet3DConditionOutput(sample=sample)