testing_utils.py 50.2 KB
Newer Older
1
import functools
2
import importlib
3
import importlib.metadata
Patrick von Platen's avatar
Patrick von Platen committed
4
import inspect
5
import io
6
import logging
7
import multiprocessing
Patrick von Platen's avatar
Patrick von Platen committed
8
9
import os
import random
10
import re
11
import struct
12
import sys
13
import tempfile
14
import time
Patrick von Platen's avatar
Patrick von Platen committed
15
import unittest
16
import urllib.parse
17
from collections import UserDict
18
from contextlib import contextmanager
19
from io import BytesIO, StringIO
20
from pathlib import Path
21
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
22

23
import numpy as np
24
25
26
import PIL.Image
import PIL.ImageOps
import requests
27
from numpy.linalg import norm
28
29
from packaging import version

30
from .constants import DIFFUSERS_REQUEST_TIMEOUT
31
32
from .import_utils import (
    BACKENDS_MAPPING,
33
34
    is_accelerate_available,
    is_bitsandbytes_available,
35
36
    is_compel_available,
    is_flax_available,
37
    is_gguf_available,
38
    is_note_seq_available,
39
40
    is_onnx_available,
    is_opencv_available,
41
    is_optimum_quanto_available,
42
    is_peft_available,
43
    is_timm_available,
44
    is_torch_available,
45
    is_torch_version,
Aryan's avatar
Aryan committed
46
    is_torchao_available,
47
    is_torchsde_available,
48
    is_transformers_available,
49
)
Will Berman's avatar
Will Berman committed
50
from .logging import get_logger
51

Patrick von Platen's avatar
Patrick von Platen committed
52

53
54
55
56
57
58
59
60
61
62
63
if is_torch_available():
    import torch

    IS_ROCM_SYSTEM = torch.version.hip is not None
    IS_CUDA_SYSTEM = torch.version.cuda is not None
    IS_XPU_SYSTEM = getattr(torch.version, "xpu", None) is not None
else:
    IS_ROCM_SYSTEM = False
    IS_CUDA_SYSTEM = False
    IS_XPU_SYSTEM = False

Patrick von Platen's avatar
Patrick von Platen committed
64
global_rng = random.Random()
65

Will Berman's avatar
Will Berman committed
66
logger = get_logger(__name__)
Patrick von Platen's avatar
Patrick von Platen committed
67

68
69
70
71
72
73
74
75
_required_peft_version = is_peft_available() and version.parse(
    version.parse(importlib.metadata.version("peft")).base_version
) > version.parse("0.5")
_required_transformers_version = is_transformers_available() and version.parse(
    version.parse(importlib.metadata.version("transformers")).base_version
) > version.parse("4.33")

USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version
76
BIG_GPU_MEMORY = int(os.getenv("BIG_GPU_MEMORY", 40))
77

Patrick von Platen's avatar
Patrick von Platen committed
78
79
80
if is_torch_available():
    import torch

Arsalan's avatar
Arsalan committed
81
82
83
84
85
86
87
88
89
90
91
    # Set a backend environment variable for any extra module import required for a custom accelerator
    if "DIFFUSERS_TEST_BACKEND" in os.environ:
        backend = os.environ["DIFFUSERS_TEST_BACKEND"]
        try:
            _ = importlib.import_module(backend)
        except ModuleNotFoundError as e:
            raise ModuleNotFoundError(
                f"Failed to import `DIFFUSERS_TEST_BACKEND` '{backend}'! This should be the name of an installed module \
                    to enable a specified backend.):\n{e}"
            ) from e

Will Berman's avatar
Will Berman committed
92
93
    if "DIFFUSERS_TEST_DEVICE" in os.environ:
        torch_device = os.environ["DIFFUSERS_TEST_DEVICE"]
94
95
96
97
98
99
100
        try:
            # try creating device to see if provided device is valid
            _ = torch.device(torch_device)
        except RuntimeError as e:
            raise RuntimeError(
                f"Unknown testing device specified by environment variable `DIFFUSERS_TEST_DEVICE`: {torch_device}"
            ) from e
Will Berman's avatar
Will Berman committed
101
102
        logger.info(f"torch_device overrode to {torch_device}")
    else:
103
104
105
106
107
108
        if torch.cuda.is_available():
            torch_device = "cuda"
        elif torch.xpu.is_available():
            torch_device = "xpu"
        else:
            torch_device = "cpu"
Will Berman's avatar
Will Berman committed
109
110
111
112
113
114
115
116
        is_torch_higher_equal_than_1_12 = version.parse(
            version.parse(torch.__version__).base_version
        ) >= version.parse("1.12")

        if is_torch_higher_equal_than_1_12:
            # Some builds of torch 1.12 don't have the mps backend registered. See #892 for more details
            mps_backend_registered = hasattr(torch.backends, "mps")
            torch_device = "mps" if (mps_backend_registered and torch.backends.mps.is_available()) else torch_device
Patrick von Platen's avatar
Patrick von Platen committed
117

118
119
    from .torch_utils import get_torch_cuda_device_capability

Patrick von Platen's avatar
Patrick von Platen committed
120

121
122
123
124
125
126
127
128
def torch_all_close(a, b, *args, **kwargs):
    if not is_torch_available():
        raise ValueError("PyTorch needs to be installed to use this function.")
    if not torch.allclose(a, b, *args, **kwargs):
        assert False, f"Max diff is absolute {(a - b).abs().max()}. Diff tensor is {(a - b).abs()}."
    return True


129
130
131
132
133
134
135
def numpy_cosine_similarity_distance(a, b):
    similarity = np.dot(a, b) / (norm(a) * norm(b))
    distance = 1.0 - similarity.mean()

    return distance


136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def check_if_dicts_are_equal(dict1, dict2):
    dict1, dict2 = dict1.copy(), dict2.copy()

    for key, value in dict1.items():
        if isinstance(value, set):
            dict1[key] = sorted(value)
    for key, value in dict2.items():
        if isinstance(value, set):
            dict2[key] = sorted(value)

    for key in dict1:
        if key not in dict2:
            return False
        if dict1[key] != dict2[key]:
            return False

    for key in dict2:
        if key not in dict1:
            return False

    return True


159
160
161
162
163
164
165
166
167
168
def print_tensor_test(
    tensor,
    limit_to_slices=None,
    max_torch_print=None,
    filename="test_corrections.txt",
    expected_tensor_name="expected_slice",
):
    if max_torch_print:
        torch.set_printoptions(threshold=10_000)

169
170
171
    test_name = os.environ.get("PYTEST_CURRENT_TEST")
    if not torch.is_tensor(tensor):
        tensor = torch.from_numpy(tensor)
172
173
    if limit_to_slices:
        tensor = tensor[0, -3:, -3:, -1]
174
175
176
177
178
179
180
181

    tensor_str = str(tensor.detach().cpu().flatten().to(torch.float32)).replace("\n", "")
    # format is usually:
    # expected_slice = np.array([-0.5713, -0.3018, -0.9814, 0.04663, -0.879, 0.76, -1.734, 0.1044, 1.161])
    output_str = tensor_str.replace("tensor", f"{expected_tensor_name} = np.array")
    test_file, test_class, test_fn = test_name.split("::")
    test_fn = test_fn.split()[0]
    with open(filename, "a") as f:
182
        print("::".join([test_file, test_class, test_fn, output_str]), file=f)
183
184


Patrick von Platen's avatar
Patrick von Platen committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def get_tests_dir(append_path=None):
    """
    Args:
        append_path: optional path to append to the tests dir path
    Return:
        The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is
        joined after the `tests` dir the former is provided.
    """
    # this function caller's __file__
    caller__file__ = inspect.stack()[1][1]
    tests_dir = os.path.abspath(os.path.dirname(caller__file__))

    while not tests_dir.endswith("tests"):
        tests_dir = os.path.dirname(tests_dir)

    if append_path:
201
        return Path(tests_dir, append_path).as_posix()
Patrick von Platen's avatar
Patrick von Platen committed
202
203
204
205
    else:
        return tests_dir


206
207
208
209
# Taken from the following PR:
# https://github.com/huggingface/accelerate/pull/1964
def str_to_bool(value) -> int:
    """
210
211
    Converts a string representation of truth to `True` (1) or `False` (0). True values are `y`, `yes`, `t`, `true`,
    `on`, and `1`; False value are `n`, `no`, `f`, `false`, `off`, and `0`;
212
213
214
215
216
217
218
219
220
221
    """
    value = value.lower()
    if value in ("y", "yes", "t", "true", "on", "1"):
        return 1
    elif value in ("n", "no", "f", "false", "off", "0"):
        return 0
    else:
        raise ValueError(f"invalid truth value {value}")


Patrick von Platen's avatar
Patrick von Platen committed
222
223
224
225
226
227
228
229
230
def parse_flag_from_env(key, default=False):
    try:
        value = os.environ[key]
    except KeyError:
        # KEY isn't set, default to `default`.
        _value = default
    else:
        # KEY is set, convert it to True or False.
        try:
Sayak Paul's avatar
Sayak Paul committed
231
            _value = str_to_bool(value)
Patrick von Platen's avatar
Patrick von Platen committed
232
233
234
235
236
237
238
        except ValueError:
            # More values are supported, but let's keep the message simple.
            raise ValueError(f"If set, {key} must be yes or no.")
    return _value


_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
239
_run_nightly_tests = parse_flag_from_env("RUN_NIGHTLY", default=False)
240
_run_compile_tests = parse_flag_from_env("RUN_COMPILE", default=False)
Patrick von Platen's avatar
Patrick von Platen committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266


def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()


def slow(test_case):
    """
    Decorator marking a test as slow.

    Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
267
268


269
270
271
272
273
274
275
276
277
278
def nightly(test_case):
    """
    Decorator marking a test that runs nightly in the diffusers CI.

    Slow tests are skipped by default. Set the RUN_NIGHTLY environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_nightly_tests, "test is nightly")(test_case)


279
280
281
282
283
284
285
286
287
288
def is_torch_compile(test_case):
    """
    Decorator marking a test that runs compile tests in the diffusers CI.

    Compile tests are skipped by default. Set the RUN_COMPILE environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_compile_tests, "test is torch compile")(test_case)


289
290
291
292
293
294
295
def require_torch(test_case):
    """
    Decorator marking a test that requires PyTorch. These tests are skipped when PyTorch isn't installed.
    """
    return unittest.skipUnless(is_torch_available(), "test requires PyTorch")(test_case)


296
297
298
299
300
301
302
303
304
def require_torch_2(test_case):
    """
    Decorator marking a test that requires PyTorch 2. These tests are skipped when it isn't installed.
    """
    return unittest.skipUnless(is_torch_available() and is_torch_version(">=", "2.0.0"), "test requires PyTorch 2")(
        test_case
    )


305
306
307
308
309
310
311
312
313
314
315
316
def require_torch_version_greater_equal(torch_version):
    """Decorator marking a test that requires torch with a specific version or greater."""

    def decorator(test_case):
        correct_torch_version = is_torch_available() and is_torch_version(">=", torch_version)
        return unittest.skipUnless(
            correct_torch_version, f"test requires torch with the version greater than or equal to {torch_version}"
        )(test_case)

    return decorator


317
318
319
320
321
322
323
324
325
326
327
328
def require_torch_version_greater(torch_version):
    """Decorator marking a test that requires torch with a specific version greater."""

    def decorator(test_case):
        correct_torch_version = is_torch_available() and is_torch_version(">", torch_version)
        return unittest.skipUnless(
            correct_torch_version, f"test requires torch with the version greater than {torch_version}"
        )(test_case)

    return decorator


329
330
331
332
333
334
335
def require_torch_gpu(test_case):
    """Decorator marking a test that requires CUDA and PyTorch."""
    return unittest.skipUnless(is_torch_available() and torch_device == "cuda", "test requires PyTorch+CUDA")(
        test_case
    )


336
337
def require_torch_cuda_compatibility(expected_compute_capability):
    def decorator(test_case):
338
        if torch.cuda.is_available():
339
340
341
342
343
344
345
346
347
            current_compute_capability = get_torch_cuda_device_capability()
            return unittest.skipUnless(
                float(current_compute_capability) == float(expected_compute_capability),
                "Test not supported for this compute capability.",
            )

    return decorator


Arsalan's avatar
Arsalan committed
348
349
350
351
352
353
354
355
# These decorators are for accelerator-specific behaviours that are not GPU-specific
def require_torch_accelerator(test_case):
    """Decorator marking a test that requires an accelerator backend and PyTorch."""
    return unittest.skipUnless(is_torch_available() and torch_device != "cpu", "test requires accelerator+PyTorch")(
        test_case
    )


356
357
358
359
360
361
362
363
364
365
366
367
368
369
def require_torch_multi_gpu(test_case):
    """
    Decorator marking a test that requires a multi-GPU setup (in PyTorch). These tests are skipped on a machine without
    multiple GPUs. To run *only* the multi_gpu tests, assuming all test names contain multi_gpu: $ pytest -sv ./tests
    -k "multi_gpu"
    """
    if not is_torch_available():
        return unittest.skip("test requires PyTorch")(test_case)

    import torch

    return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case)


370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
def require_torch_multi_accelerator(test_case):
    """
    Decorator marking a test that requires a multi-accelerator setup (in PyTorch). These tests are skipped on a machine
    without multiple hardware accelerators.
    """
    if not is_torch_available():
        return unittest.skip("test requires PyTorch")(test_case)

    import torch

    return unittest.skipUnless(
        torch.cuda.device_count() > 1 or torch.xpu.device_count() > 1, "test requires multiple hardware accelerators"
    )(test_case)


Arsalan's avatar
Arsalan committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
def require_torch_accelerator_with_fp16(test_case):
    """Decorator marking a test that requires an accelerator with support for the FP16 data type."""
    return unittest.skipUnless(_is_torch_fp16_available(torch_device), "test requires accelerator with fp16 support")(
        test_case
    )


def require_torch_accelerator_with_fp64(test_case):
    """Decorator marking a test that requires an accelerator with support for the FP64 data type."""
    return unittest.skipUnless(_is_torch_fp64_available(torch_device), "test requires accelerator with fp64 support")(
        test_case
    )


399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
def require_big_gpu_with_torch_cuda(test_case):
    """
    Decorator marking a test that requires a bigger GPU (24GB) for execution. Some example pipelines: Flux, SD3, Cog,
    etc.
    """
    if not is_torch_available():
        return unittest.skip("test requires PyTorch")(test_case)

    import torch

    if not torch.cuda.is_available():
        return unittest.skip("test requires PyTorch CUDA")(test_case)

    device_properties = torch.cuda.get_device_properties(0)
    total_memory = device_properties.total_memory / (1024**3)
    return unittest.skipUnless(
        total_memory >= BIG_GPU_MEMORY, f"test requires a GPU with at least {BIG_GPU_MEMORY} GB memory"
    )(test_case)


419
420
421
422
423
def require_big_accelerator(test_case):
    """
    Decorator marking a test that requires a bigger hardware accelerator (24GB) for execution. Some example pipelines:
    Flux, SD3, Cog, etc.
    """
424
425
426
427
    import pytest

    test_case = pytest.mark.big_accelerator(test_case)

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    if not is_torch_available():
        return unittest.skip("test requires PyTorch")(test_case)

    import torch

    if not (torch.cuda.is_available() or torch.xpu.is_available()):
        return unittest.skip("test requires PyTorch CUDA")(test_case)

    if torch.xpu.is_available():
        device_properties = torch.xpu.get_device_properties(0)
    else:
        device_properties = torch.cuda.get_device_properties(0)

    total_memory = device_properties.total_memory / (1024**3)
    return unittest.skipUnless(
        total_memory >= BIG_GPU_MEMORY,
        f"test requires a hardware accelerator with at least {BIG_GPU_MEMORY} GB memory",
    )(test_case)


Arsalan's avatar
Arsalan committed
448
449
450
451
452
453
454
455
def require_torch_accelerator_with_training(test_case):
    """Decorator marking a test that requires an accelerator with support for training."""
    return unittest.skipUnless(
        is_torch_available() and backend_supports_training(torch_device),
        "test requires accelerator with training support",
    )(test_case)


456
457
458
459
460
def skip_mps(test_case):
    """Decorator marking a test to skip if torch_device is 'mps'"""
    return unittest.skipUnless(torch_device != "mps", "test requires non 'mps' device")(test_case)


461
462
463
464
465
466
467
def require_flax(test_case):
    """
    Decorator marking a test that requires JAX & Flax. These tests are skipped when one / both are not installed
    """
    return unittest.skipUnless(is_flax_available(), "test requires JAX & Flax")(test_case)


468
469
470
471
472
473
474
475
def require_compel(test_case):
    """
    Decorator marking a test that requires compel: https://github.com/damian0815/compel. These tests are skipped when
    the library is not installed.
    """
    return unittest.skipUnless(is_compel_available(), "test requires compel")(test_case)


476
477
478
479
480
481
482
def require_onnxruntime(test_case):
    """
    Decorator marking a test that requires onnxruntime. These tests are skipped when onnxruntime isn't installed.
    """
    return unittest.skipUnless(is_onnx_available(), "test requires onnxruntime")(test_case)


483
484
485
486
487
488
489
def require_note_seq(test_case):
    """
    Decorator marking a test that requires note_seq. These tests are skipped when note_seq isn't installed.
    """
    return unittest.skipUnless(is_note_seq_available(), "test requires note_seq")(test_case)


490
491
492
493
494
495
496
497
def require_accelerator(test_case):
    """
    Decorator marking a test that requires a hardware accelerator backend. These tests are skipped when there are no
    hardware accelerator available.
    """
    return unittest.skipUnless(torch_device != "cpu", "test requires a hardware accelerator")(test_case)


498
499
500
501
502
503
504
def require_torchsde(test_case):
    """
    Decorator marking a test that requires torchsde. These tests are skipped when torchsde isn't installed.
    """
    return unittest.skipUnless(is_torchsde_available(), "test requires torchsde")(test_case)


505
506
507
508
509
510
511
512
def require_peft_backend(test_case):
    """
    Decorator marking a test that requires PEFT backend, this would require some specific versions of PEFT and
    transformers.
    """
    return unittest.skipUnless(USE_PEFT_BACKEND, "test requires PEFT backend")(test_case)


513
514
515
516
517
518
519
def require_timm(test_case):
    """
    Decorator marking a test that requires timm. These tests are skipped when timm isn't installed.
    """
    return unittest.skipUnless(is_timm_available(), "test requires timm")(test_case)


520
521
522
523
524
525
526
def require_bitsandbytes(test_case):
    """
    Decorator marking a test that requires bitsandbytes. These tests are skipped when bitsandbytes isn't installed.
    """
    return unittest.skipUnless(is_bitsandbytes_available(), "test requires bitsandbytes")(test_case)


527
528
529
530
531
532
533
def require_quanto(test_case):
    """
    Decorator marking a test that requires quanto. These tests are skipped when quanto isn't installed.
    """
    return unittest.skipUnless(is_optimum_quanto_available(), "test requires quanto")(test_case)


534
535
536
537
538
539
540
def require_accelerate(test_case):
    """
    Decorator marking a test that requires accelerate. These tests are skipped when accelerate isn't installed.
    """
    return unittest.skipUnless(is_accelerate_available(), "test requires accelerate")(test_case)


541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
def require_peft_version_greater(peft_version):
    """
    Decorator marking a test that requires PEFT backend with a specific version, this would require some specific
    versions of PEFT and transformers.
    """

    def decorator(test_case):
        correct_peft_version = is_peft_available() and version.parse(
            version.parse(importlib.metadata.version("peft")).base_version
        ) > version.parse(peft_version)
        return unittest.skipUnless(
            correct_peft_version, f"test requires PEFT backend with the version greater than {peft_version}"
        )(test_case)

    return decorator


558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
def require_transformers_version_greater(transformers_version):
    """
    Decorator marking a test that requires transformers with a specific version, this would require some specific
    versions of PEFT and transformers.
    """

    def decorator(test_case):
        correct_transformers_version = is_transformers_available() and version.parse(
            version.parse(importlib.metadata.version("transformers")).base_version
        ) > version.parse(transformers_version)
        return unittest.skipUnless(
            correct_transformers_version,
            f"test requires transformers with the version greater than {transformers_version}",
        )(test_case)

    return decorator


576
577
def require_accelerate_version_greater(accelerate_version):
    def decorator(test_case):
578
        correct_accelerate_version = is_accelerate_available() and version.parse(
579
580
581
582
583
584
585
586
587
            version.parse(importlib.metadata.version("accelerate")).base_version
        ) > version.parse(accelerate_version)
        return unittest.skipUnless(
            correct_accelerate_version, f"Test requires accelerate with the version greater than {accelerate_version}."
        )(test_case)

    return decorator


588
589
590
591
592
593
594
def require_bitsandbytes_version_greater(bnb_version):
    def decorator(test_case):
        correct_bnb_version = is_bitsandbytes_available() and version.parse(
            version.parse(importlib.metadata.version("bitsandbytes")).base_version
        ) > version.parse(bnb_version)
        return unittest.skipUnless(
            correct_bnb_version, f"Test requires bitsandbytes with the version greater than {bnb_version}."
Marc Sun's avatar
Marc Sun committed
595
596
597
598
599
600
601
602
603
604
605
606
        )(test_case)

    return decorator


def require_hf_hub_version_greater(hf_hub_version):
    def decorator(test_case):
        correct_hf_hub_version = version.parse(
            version.parse(importlib.metadata.version("huggingface_hub")).base_version
        ) > version.parse(hf_hub_version)
        return unittest.skipUnless(
            correct_hf_hub_version, f"Test requires huggingface_hub with the version greater than {hf_hub_version}."
607
608
609
610
611
        )(test_case)

    return decorator


612
613
614
615
616
617
618
619
620
621
622
623
def require_gguf_version_greater_or_equal(gguf_version):
    def decorator(test_case):
        correct_gguf_version = is_gguf_available() and version.parse(
            version.parse(importlib.metadata.version("gguf")).base_version
        ) >= version.parse(gguf_version)
        return unittest.skipUnless(
            correct_gguf_version, f"Test requires gguf with the version greater than {gguf_version}."
        )(test_case)

    return decorator


624
def require_torchao_version_greater_or_equal(torchao_version):
Aryan's avatar
Aryan committed
625
626
627
    def decorator(test_case):
        correct_torchao_version = is_torchao_available() and version.parse(
            version.parse(importlib.metadata.version("torchao")).base_version
628
        ) >= version.parse(torchao_version)
Aryan's avatar
Aryan committed
629
630
631
632
633
634
635
        return unittest.skipUnless(
            correct_torchao_version, f"Test requires torchao with version greater than {torchao_version}."
        )(test_case)

    return decorator


636
637
638
639
640
641
642
def deprecate_after_peft_backend(test_case):
    """
    Decorator marking a test that will be skipped after PEFT backend
    """
    return unittest.skipUnless(not USE_PEFT_BACKEND, "test skipped in favor of PEFT backend")(test_case)


643
644
645
646
647
648
def get_python_version():
    sys_info = sys.version_info
    major, minor = sys_info.major, sys_info.minor
    return major, minor


649
def load_numpy(arry: Union[str, np.ndarray], local_path: Optional[str] = None) -> np.ndarray:
650
    if isinstance(arry, str):
651
652
        if local_path is not None:
            # local_path can be passed to correct images of tests
653
            return Path(local_path, arry.split("/")[-5], arry.split("/")[-2], arry.split("/")[-1]).as_posix()
654
        elif arry.startswith("http://") or arry.startswith("https://"):
655
            response = requests.get(arry, timeout=DIFFUSERS_REQUEST_TIMEOUT)
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
            response.raise_for_status()
            arry = np.load(BytesIO(response.content))
        elif os.path.isfile(arry):
            arry = np.load(arry)
        else:
            raise ValueError(
                f"Incorrect path or url, URLs must start with `http://` or `https://`, and {arry} is not a valid path"
            )
    elif isinstance(arry, np.ndarray):
        pass
    else:
        raise ValueError(
            "Incorrect format used for numpy ndarray. Should be an url linking to an image, a local path, or a"
            " ndarray."
        )

    return arry


675
def load_pt(url: str, map_location: Optional[str] = None, weights_only: Optional[bool] = True):
676
    response = requests.get(url, timeout=DIFFUSERS_REQUEST_TIMEOUT)
677
    response.raise_for_status()
678
    arry = torch.load(BytesIO(response.content), map_location=map_location, weights_only=weights_only)
679
680
681
    return arry


682
683
684
def load_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image:
    """
    Loads `image` to a PIL Image.
Steven Liu's avatar
Steven Liu committed
685
686

    Args:
687
688
689
        image (`str` or `PIL.Image.Image`):
            The image to convert to the PIL Image format.
    Returns:
Steven Liu's avatar
Steven Liu committed
690
691
        `PIL.Image.Image`:
            A PIL Image.
692
693
694
    """
    if isinstance(image, str):
        if image.startswith("http://") or image.startswith("https://"):
695
            image = PIL.Image.open(requests.get(image, stream=True, timeout=DIFFUSERS_REQUEST_TIMEOUT).raw)
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        elif os.path.isfile(image):
            image = PIL.Image.open(image)
        else:
            raise ValueError(
                f"Incorrect path or url, URLs must start with `http://` or `https://`, and {image} is not a valid path"
            )
    elif isinstance(image, PIL.Image.Image):
        image = image
    else:
        raise ValueError(
            "Incorrect format used for image. Should be an url linking to an image, a local path, or a PIL image."
        )
    image = PIL.ImageOps.exif_transpose(image)
    image = image.convert("RGB")
    return image
711
712


713
714
715
716
717
718
719
720
721
722
def preprocess_image(image: PIL.Image, batch_size: int):
    w, h = image.size
    w, h = (x - x % 8 for x in (w, h))  # resize to integer multiple of 8
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size)
    image = torch.from_numpy(image)
    return 2.0 * image - 1.0


YiYi Xu's avatar
YiYi Xu committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
def export_to_gif(image: List[PIL.Image.Image], output_gif_path: str = None) -> str:
    if output_gif_path is None:
        output_gif_path = tempfile.NamedTemporaryFile(suffix=".gif").name

    image[0].save(
        output_gif_path,
        save_all=True,
        append_images=image[1:],
        optimize=False,
        duration=100,
        loop=0,
    )
    return output_gif_path


738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
@contextmanager
def buffered_writer(raw_f):
    f = io.BufferedWriter(raw_f)
    yield f
    f.flush()


def export_to_ply(mesh, output_ply_path: str = None):
    """
    Write a PLY file for a mesh.
    """
    if output_ply_path is None:
        output_ply_path = tempfile.NamedTemporaryFile(suffix=".ply").name

    coords = mesh.verts.detach().cpu().numpy()
    faces = mesh.faces.cpu().numpy()
    rgb = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1)

    with buffered_writer(open(output_ply_path, "wb")) as f:
        f.write(b"ply\n")
        f.write(b"format binary_little_endian 1.0\n")
        f.write(bytes(f"element vertex {len(coords)}\n", "ascii"))
        f.write(b"property float x\n")
        f.write(b"property float y\n")
        f.write(b"property float z\n")
        if rgb is not None:
            f.write(b"property uchar red\n")
            f.write(b"property uchar green\n")
            f.write(b"property uchar blue\n")
        if faces is not None:
            f.write(bytes(f"element face {len(faces)}\n", "ascii"))
            f.write(b"property list uchar int vertex_index\n")
        f.write(b"end_header\n")

        if rgb is not None:
            rgb = (rgb * 255.499).round().astype(int)
            vertices = [
                (*coord, *rgb)
                for coord, rgb in zip(
                    coords.tolist(),
                    rgb.tolist(),
                )
            ]
            format = struct.Struct("<3f3B")
            for item in vertices:
                f.write(format.pack(*item))
        else:
            format = struct.Struct("<3f")
            for vertex in coords.tolist():
                f.write(format.pack(*vertex))

        if faces is not None:
            format = struct.Struct("<B3I")
            for tri in faces.tolist():
                f.write(format.pack(len(tri), *tri))

    return output_ply_path


def export_to_obj(mesh, output_obj_path: str = None):
    if output_obj_path is None:
        output_obj_path = tempfile.NamedTemporaryFile(suffix=".obj").name

    verts = mesh.verts.detach().cpu().numpy()
    faces = mesh.faces.cpu().numpy()

    vertex_colors = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1)
    vertices = [
        "{} {} {} {} {} {}".format(*coord, *color) for coord, color in zip(verts.tolist(), vertex_colors.tolist())
    ]

    faces = ["f {} {} {}".format(str(tri[0] + 1), str(tri[1] + 1), str(tri[2] + 1)) for tri in faces.tolist()]

    combined_data = ["v " + vertex for vertex in vertices] + faces

    with open(output_obj_path, "w") as f:
        f.writelines("\n".join(combined_data))


817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
def export_to_video(video_frames: List[np.ndarray], output_video_path: str = None) -> str:
    if is_opencv_available():
        import cv2
    else:
        raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video"))
    if output_video_path is None:
        output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name

    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    h, w, c = video_frames[0].shape
    video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=8, frameSize=(w, h))
    for i in range(len(video_frames)):
        img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
        video_writer.write(img)
    return output_video_path


834
def load_hf_numpy(path) -> np.ndarray:
835
836
837
    base_url = "https://huggingface.co/datasets/fusing/diffusers-testing/resolve/main"

    if not path.startswith("http://") and not path.startswith("https://"):
838
        path = os.path.join(base_url, urllib.parse.quote(path))
839

840
    return load_numpy(path)
841
842


843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
# --- pytest conf functions --- #

# to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once
pytest_opt_registered = {}


def pytest_addoption_shared(parser):
    """
    This function is to be called from `conftest.py` via `pytest_addoption` wrapper that has to be defined there.

    It allows loading both `conftest.py` files at once without causing a failure due to adding the same `pytest`
    option.

    """
    option = "--make-reports"
    if option not in pytest_opt_registered:
        parser.addoption(
            option,
            action="store",
            default=False,
            help="generate report files. The value of this option is used as a prefix to report names",
        )
        pytest_opt_registered[option] = 1


def pytest_terminal_summary_main(tr, id):
    """
    Generate multiple reports at the end of test suite run - each report goes into a dedicated file in the current
    directory. The report files are prefixed with the test suite name.

    This function emulates --duration and -rA pytest arguments.

    This function is to be called from `conftest.py` via `pytest_terminal_summary` wrapper that has to be defined
    there.

    Args:
    - tr: `terminalreporter` passed from `conftest.py`
    - id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is
      needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other.

    NB: this functions taps into a private _pytest API and while unlikely, it could break should
    pytest do internal changes - also it calls default internal methods of terminalreporter which
    can be hijacked by various `pytest-` plugins and interfere.

    """
    from _pytest.config import create_terminal_writer

    if not len(id):
        id = "tests"

    config = tr.config
    orig_writer = config.get_terminal_writer()
    orig_tbstyle = config.option.tbstyle
    orig_reportchars = tr.reportchars

    dir = "reports"
    Path(dir).mkdir(parents=True, exist_ok=True)
    report_files = {
        k: f"{dir}/{id}_{k}.txt"
        for k in [
            "durations",
            "errors",
            "failures_long",
            "failures_short",
            "failures_line",
            "passes",
            "stats",
            "summary_short",
            "warnings",
        ]
    }

    # custom durations report
    # note: there is no need to call pytest --durations=XX to get this separate report
    # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/runner.py#L66
    dlist = []
    for replist in tr.stats.values():
        for rep in replist:
            if hasattr(rep, "duration"):
                dlist.append(rep)
    if dlist:
        dlist.sort(key=lambda x: x.duration, reverse=True)
        with open(report_files["durations"], "w") as f:
            durations_min = 0.05  # sec
            f.write("slowest durations\n")
            for i, rep in enumerate(dlist):
                if rep.duration < durations_min:
930
                    f.write(f"{len(dlist) - i} durations < {durations_min} secs were omitted")
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
                    break
                f.write(f"{rep.duration:02.2f}s {rep.when:<8} {rep.nodeid}\n")

    def summary_failures_short(tr):
        # expecting that the reports were --tb=long (default) so we chop them off here to the last frame
        reports = tr.getreports("failed")
        if not reports:
            return
        tr.write_sep("=", "FAILURES SHORT STACK")
        for rep in reports:
            msg = tr._getfailureheadline(rep)
            tr.write_sep("_", msg, red=True, bold=True)
            # chop off the optional leading extra frames, leaving only the last one
            longrepr = re.sub(r".*_ _ _ (_ ){10,}_ _ ", "", rep.longreprtext, 0, re.M | re.S)
            tr._tw.line(longrepr)
            # note: not printing out any rep.sections to keep the report short

    # use ready-made report funcs, we are just hijacking the filehandle to log to a dedicated file each
    # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/terminal.py#L814
    # note: some pytest plugins may interfere by hijacking the default `terminalreporter` (e.g.
    # pytest-instafail does that)

    # report failures with line/short/long styles
    config.option.tbstyle = "auto"  # full tb
    with open(report_files["failures_long"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_failures()

    # config.option.tbstyle = "short" # short tb
    with open(report_files["failures_short"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        summary_failures_short(tr)

    config.option.tbstyle = "line"  # one line per error
    with open(report_files["failures_line"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_failures()

    with open(report_files["errors"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_errors()

    with open(report_files["warnings"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_warnings()  # normal warnings
        tr.summary_warnings()  # final warnings

    tr.reportchars = "wPpsxXEf"  # emulate -rA (used in summary_passes() and short_test_summary())
    with open(report_files["passes"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_passes()

    with open(report_files["summary_short"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.short_test_summary()

    with open(report_files["stats"], "w") as f:
        tr._tw = create_terminal_writer(config, f)
        tr.summary_stats()

    # restore:
    tr._tw = orig_writer
    tr.reportchars = orig_reportchars
    config.option.tbstyle = orig_tbstyle
995
996


997
# Adapted from https://github.com/huggingface/transformers/blob/000e52aec8850d3fe2f360adc6fd256e5b47fe4c/src/transformers/testing_utils.py#L1905
998
999
def is_flaky(max_attempts: int = 5, wait_before_retry: Optional[float] = None, description: Optional[str] = None):
    """
1000
    To decorate flaky tests (methods or entire classes). They will be retried on failures.
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

    Args:
        max_attempts (`int`, *optional*, defaults to 5):
            The maximum number of attempts to retry the flaky test.
        wait_before_retry (`float`, *optional*):
            If provided, will wait that number of seconds before retrying the test.
        description (`str`, *optional*):
            A string to describe the situation (what / where / why is flaky, link to GH issue/PR comments, errors,
            etc.)
    """

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
    def decorator(obj):
        # If decorating a class, wrap each test method on it
        if inspect.isclass(obj):
            for attr_name, attr_value in list(obj.__dict__.items()):
                if callable(attr_value) and attr_name.startswith("test"):
                    # recursively decorate the method
                    setattr(obj, attr_name, decorator(attr_value))
            return obj

        # Otherwise we're decorating a single test function / method
        @functools.wraps(obj)
1023
1024
1025
1026
        def wrapper(*args, **kwargs):
            retry_count = 1
            while retry_count < max_attempts:
                try:
1027
                    return obj(*args, **kwargs)
1028
                except Exception as err:
1029
1030
1031
1032
1033
                    msg = (
                        f"[FLAKY] {description or obj.__name__!r} "
                        f"failed on attempt {retry_count}/{max_attempts}: {err}"
                    )
                    print(msg, file=sys.stderr)
1034
1035
1036
1037
                    if wait_before_retry is not None:
                        time.sleep(wait_before_retry)
                    retry_count += 1

1038
            return obj(*args, **kwargs)
1039
1040
1041
1042
1043
1044

        return wrapper

    return decorator


1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
# Taken from: https://github.com/huggingface/transformers/blob/3658488ff77ff8d45101293e749263acf437f4d5/src/transformers/testing_utils.py#L1787
def run_test_in_subprocess(test_case, target_func, inputs=None, timeout=None):
    """
    To run a test in a subprocess. In particular, this can avoid (GPU) memory issue.

    Args:
        test_case (`unittest.TestCase`):
            The test that will run `target_func`.
        target_func (`Callable`):
            The function implementing the actual testing logic.
        inputs (`dict`, *optional*, defaults to `None`):
            The inputs that will be passed to `target_func` through an (input) queue.
        timeout (`int`, *optional*, defaults to `None`):
            The timeout (in seconds) that will be passed to the input and output queues. If not specified, the env.
            variable `PYTEST_TIMEOUT` will be checked. If still `None`, its value will be set to `600`.
    """
    if timeout is None:
        timeout = int(os.environ.get("PYTEST_TIMEOUT", 600))

    start_methohd = "spawn"
    ctx = multiprocessing.get_context(start_methohd)

    input_queue = ctx.Queue(1)
    output_queue = ctx.JoinableQueue(1)

    # We can't send `unittest.TestCase` to the child, otherwise we get issues regarding pickle.
    input_queue.put(inputs, timeout=timeout)

    process = ctx.Process(target=target_func, args=(input_queue, output_queue, timeout))
    process.start()
    # Kill the child process if we can't get outputs from it in time: otherwise, the hanging subprocess prevents
    # the test to exit properly.
    try:
        results = output_queue.get(timeout=timeout)
        output_queue.task_done()
    except Exception as e:
        process.terminate()
        test_case.fail(e)
    process.join(timeout=timeout)

    if results["error"] is not None:
1086
        test_case.fail(f"{results['error']}")
1087
1088


1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
class CaptureLogger:
    """
    Args:
    Context manager to capture `logging` streams
        logger: 'logging` logger object
    Returns:
        The captured output is available via `self.out`
    Example:
    ```python
    >>> from diffusers import logging
    >>> from diffusers.testing_utils import CaptureLogger

    >>> msg = "Testing 1, 2, 3"
    >>> logging.set_verbosity_info()
    >>> logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.py")
    >>> with CaptureLogger(logger) as cl:
    ...     logger.info(msg)
    >>> assert cl.out, msg + "\n"
    ```
    """

    def __init__(self, logger):
        self.logger = logger
        self.io = StringIO()
        self.sh = logging.StreamHandler(self.io)
        self.out = ""

    def __enter__(self):
        self.logger.addHandler(self.sh)
        return self

    def __exit__(self, *exc):
        self.logger.removeHandler(self.sh)
        self.out = self.io.getvalue()

    def __repr__(self):
        return f"captured: {self.out}\n"
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143


def enable_full_determinism():
    """
    Helper function for reproducible behavior during distributed training. See
    - https://pytorch.org/docs/stable/notes/randomness.html for pytorch
    """
    #  Enable PyTorch deterministic mode. This potentially requires either the environment
    #  variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
    # depending on the CUDA version, so we set them both here
    os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
    os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
    torch.use_deterministic_algorithms(True)

    # Enable CUDNN deterministic mode
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.backends.cuda.matmul.allow_tf32 = False
1144
1145
1146
1147
1148
1149


def disable_full_determinism():
    os.environ["CUDA_LAUNCH_BLOCKING"] = "0"
    os.environ["CUBLAS_WORKSPACE_CONFIG"] = ""
    torch.use_deterministic_algorithms(False)
Arsalan's avatar
Arsalan committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162


# Utils for custom and alternative accelerator devices
def _is_torch_fp16_available(device):
    if not is_torch_available():
        return False

    import torch

    device = torch.device(device)

    try:
        x = torch.zeros((2, 2), dtype=torch.float16).to(device)
Dhruv Nair's avatar
Dhruv Nair committed
1163
1164
1165
        _ = torch.mul(x, x)
        return True

Arsalan's avatar
Arsalan committed
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
    except Exception as e:
        if device.type == "cuda":
            raise ValueError(
                f"You have passed a device of type 'cuda' which should work with 'fp16', but 'cuda' does not seem to be correctly installed on your machine: {e}"
            )

        return False


def _is_torch_fp64_available(device):
    if not is_torch_available():
        return False

    import torch

1181
1182
    device = torch.device(device)

Arsalan's avatar
Arsalan committed
1183
1184
    try:
        x = torch.zeros((2, 2), dtype=torch.float64).to(device)
Dhruv Nair's avatar
Dhruv Nair committed
1185
1186
1187
        _ = torch.mul(x, x)
        return True

Arsalan's avatar
Arsalan committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
    except Exception as e:
        if device.type == "cuda":
            raise ValueError(
                f"You have passed a device of type 'cuda' which should work with 'fp64', but 'cuda' does not seem to be correctly installed on your machine: {e}"
            )

        return False


# Guard these lookups for when Torch is not used - alternative accelerator support is for PyTorch
if is_torch_available():
    # Behaviour flags
1200
    BACKEND_SUPPORTS_TRAINING = {"cuda": True, "xpu": True, "cpu": True, "mps": False, "default": True}
Arsalan's avatar
Arsalan committed
1201
1202

    # Function definitions
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
    BACKEND_EMPTY_CACHE = {
        "cuda": torch.cuda.empty_cache,
        "xpu": torch.xpu.empty_cache,
        "cpu": None,
        "mps": torch.mps.empty_cache,
        "default": None,
    }
    BACKEND_DEVICE_COUNT = {
        "cuda": torch.cuda.device_count,
        "xpu": torch.xpu.device_count,
        "cpu": lambda: 0,
        "mps": lambda: 0,
        "default": 0,
    }
    BACKEND_MANUAL_SEED = {
        "cuda": torch.cuda.manual_seed,
        "xpu": torch.xpu.manual_seed,
        "cpu": torch.manual_seed,
        "mps": torch.mps.manual_seed,
        "default": torch.manual_seed,
    }
    BACKEND_RESET_PEAK_MEMORY_STATS = {
        "cuda": torch.cuda.reset_peak_memory_stats,
        "xpu": getattr(torch.xpu, "reset_peak_memory_stats", None),
        "cpu": None,
        "mps": None,
        "default": None,
    }
    BACKEND_RESET_MAX_MEMORY_ALLOCATED = {
        "cuda": torch.cuda.reset_max_memory_allocated,
1233
        "xpu": getattr(torch.xpu, "reset_peak_memory_stats", None),
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
        "cpu": None,
        "mps": None,
        "default": None,
    }
    BACKEND_MAX_MEMORY_ALLOCATED = {
        "cuda": torch.cuda.max_memory_allocated,
        "xpu": getattr(torch.xpu, "max_memory_allocated", None),
        "cpu": 0,
        "mps": 0,
        "default": 0,
    }
1245
1246
1247
1248
1249
1250
1251
    BACKEND_SYNCHRONIZE = {
        "cuda": torch.cuda.synchronize,
        "xpu": getattr(torch.xpu, "synchronize", None),
        "cpu": None,
        "mps": None,
        "default": None,
    }
Arsalan's avatar
Arsalan committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262


# This dispatches a defined function according to the accelerator from the function definitions.
def _device_agnostic_dispatch(device: str, dispatch_table: Dict[str, Callable], *args, **kwargs):
    if device not in dispatch_table:
        return dispatch_table["default"](*args, **kwargs)

    fn = dispatch_table[device]

    # Some device agnostic functions return values. Need to guard against 'None' instead at
    # user level
1263
1264
    if not callable(fn):
        return fn
Arsalan's avatar
Arsalan committed
1265
1266
1267
1268
1269
1270
1271
1272
1273

    return fn(*args, **kwargs)


# These are callables which automatically dispatch the function specific to the accelerator
def backend_manual_seed(device: str, seed: int):
    return _device_agnostic_dispatch(device, BACKEND_MANUAL_SEED, seed)


1274
1275
1276
1277
def backend_synchronize(device: str):
    return _device_agnostic_dispatch(device, BACKEND_SYNCHRONIZE)


Arsalan's avatar
Arsalan committed
1278
1279
1280
1281
1282
1283
1284
1285
def backend_empty_cache(device: str):
    return _device_agnostic_dispatch(device, BACKEND_EMPTY_CACHE)


def backend_device_count(device: str):
    return _device_agnostic_dispatch(device, BACKEND_DEVICE_COUNT)


1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
def backend_reset_peak_memory_stats(device: str):
    return _device_agnostic_dispatch(device, BACKEND_RESET_PEAK_MEMORY_STATS)


def backend_reset_max_memory_allocated(device: str):
    return _device_agnostic_dispatch(device, BACKEND_RESET_MAX_MEMORY_ALLOCATED)


def backend_max_memory_allocated(device: str):
    return _device_agnostic_dispatch(device, BACKEND_MAX_MEMORY_ALLOCATED)


Arsalan's avatar
Arsalan committed
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
# These are callables which return boolean behaviour flags and can be used to specify some
# device agnostic alternative where the feature is unsupported.
def backend_supports_training(device: str):
    if not is_torch_available():
        return False

    if device not in BACKEND_SUPPORTS_TRAINING:
        device = "default"

    return BACKEND_SUPPORTS_TRAINING[device]


# Guard for when Torch is not available
if is_torch_available():
    # Update device function dict mapping
    def update_mapping_from_spec(device_fn_dict: Dict[str, Callable], attribute_name: str):
        try:
            # Try to import the function directly
            spec_fn = getattr(device_spec_module, attribute_name)
            device_fn_dict[torch_device] = spec_fn
        except AttributeError as e:
            # If the function doesn't exist, and there is no default, throw an error
            if "default" not in device_fn_dict:
                raise AttributeError(
                    f"`{attribute_name}` not found in '{device_spec_path}' and no default fallback function found."
                ) from e

    if "DIFFUSERS_TEST_DEVICE_SPEC" in os.environ:
        device_spec_path = os.environ["DIFFUSERS_TEST_DEVICE_SPEC"]
        if not Path(device_spec_path).is_file():
            raise ValueError(f"Specified path to device specification file is not found. Received {device_spec_path}")

        try:
            import_name = device_spec_path[: device_spec_path.index(".py")]
        except ValueError as e:
            raise ValueError(f"Provided device spec file is not a Python file! Received {device_spec_path}") from e

        device_spec_module = importlib.import_module(import_name)

        try:
            device_name = device_spec_module.DEVICE_NAME
        except AttributeError:
            raise AttributeError("Device spec file did not contain `DEVICE_NAME`")

        if "DIFFUSERS_TEST_DEVICE" in os.environ and torch_device != device_name:
            msg = f"Mismatch between environment variable `DIFFUSERS_TEST_DEVICE` '{torch_device}' and device found in spec '{device_name}'\n"
            msg += "Either unset `DIFFUSERS_TEST_DEVICE` or ensure it matches device spec name."
            raise ValueError(msg)

        torch_device = device_name

        # Add one entry here for each `BACKEND_*` dictionary.
        update_mapping_from_spec(BACKEND_MANUAL_SEED, "MANUAL_SEED_FN")
        update_mapping_from_spec(BACKEND_EMPTY_CACHE, "EMPTY_CACHE_FN")
        update_mapping_from_spec(BACKEND_DEVICE_COUNT, "DEVICE_COUNT_FN")
        update_mapping_from_spec(BACKEND_SUPPORTS_TRAINING, "SUPPORTS_TRAINING")
1354
1355
1356
        update_mapping_from_spec(BACKEND_RESET_PEAK_MEMORY_STATS, "RESET_PEAK_MEMORY_STATS_FN")
        update_mapping_from_spec(BACKEND_RESET_MAX_MEMORY_ALLOCATED, "RESET_MAX_MEMORY_ALLOCATED_FN")
        update_mapping_from_spec(BACKEND_MAX_MEMORY_ALLOCATED, "MAX_MEMORY_ALLOCATED_FN")
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446


# Modified from https://github.com/huggingface/transformers/blob/cdfb018d0300fef3b07d9220f3efe9c2a9974662/src/transformers/testing_utils.py#L3090

# Type definition of key used in `Expectations` class.
DeviceProperties = Tuple[Union[str, None], Union[int, None]]


@functools.lru_cache
def get_device_properties() -> DeviceProperties:
    """
    Get environment device properties.
    """
    if IS_CUDA_SYSTEM or IS_ROCM_SYSTEM:
        import torch

        major, _ = torch.cuda.get_device_capability()
        if IS_ROCM_SYSTEM:
            return ("rocm", major)
        else:
            return ("cuda", major)
    elif IS_XPU_SYSTEM:
        import torch

        # To get more info of the architecture meaning and bit allocation, refer to https://github.com/intel/llvm/blob/sycl/sycl/include/sycl/ext/oneapi/experimental/device_architecture.def
        arch = torch.xpu.get_device_capability()["architecture"]
        gen_mask = 0x000000FF00000000
        gen = (arch & gen_mask) >> 32
        return ("xpu", gen)
    else:
        return (torch_device, None)


if TYPE_CHECKING:
    DevicePropertiesUserDict = UserDict[DeviceProperties, Any]
else:
    DevicePropertiesUserDict = UserDict


class Expectations(DevicePropertiesUserDict):
    def get_expectation(self) -> Any:
        """
        Find best matching expectation based on environment device properties.
        """
        return self.find_expectation(get_device_properties())

    @staticmethod
    def is_default(key: DeviceProperties) -> bool:
        return all(p is None for p in key)

    @staticmethod
    def score(key: DeviceProperties, other: DeviceProperties) -> int:
        """
        Returns score indicating how similar two instances of the `Properties` tuple are. Points are calculated using
        bits, but documented as int. Rules are as follows:
            * Matching `type` gives 8 points.
            * Semi-matching `type`, for example cuda and rocm, gives 4 points.
            * Matching `major` (compute capability major version) gives 2 points.
            * Default expectation (if present) gives 1 points.
        """
        (device_type, major) = key
        (other_device_type, other_major) = other

        score = 0b0
        if device_type == other_device_type:
            score |= 0b1000
        elif device_type in ["cuda", "rocm"] and other_device_type in ["cuda", "rocm"]:
            score |= 0b100

        if major == other_major and other_major is not None:
            score |= 0b10

        if Expectations.is_default(other):
            score |= 0b1

        return int(score)

    def find_expectation(self, key: DeviceProperties = (None, None)) -> Any:
        """
        Find best matching expectation based on provided device properties.
        """
        (result_key, result) = max(self.data.items(), key=lambda x: Expectations.score(key, x[0]))

        if Expectations.score(key, result_key) == 0:
            raise ValueError(f"No matching expectation found for {key}")

        return result

    def __repr__(self):
        return f"{self.data}"