train_unconditional.py 16 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import math
anton-l's avatar
anton-l committed
3
import os
4
5
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
6
7
8
9

import torch
import torch.nn.functional as F

10
from accelerate import Accelerator
11
from accelerate.logging import get_logger
anton-l's avatar
anton-l committed
12
from datasets import load_dataset
anton-l's avatar
anton-l committed
13
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
14
from diffusers.optimization import get_scheduler
anton-l's avatar
anton-l committed
15
from diffusers.training_utils import EMAModel
16
from huggingface_hub import HfFolder, Repository, whoami
anton-l's avatar
anton-l committed
17
from torchvision.transforms import (
Patrick von Platen's avatar
Patrick von Platen committed
18
    CenterCrop,
anton-l's avatar
anton-l committed
19
20
    Compose,
    InterpolationMode,
anton-l's avatar
anton-l committed
21
    Normalize,
anton-l's avatar
anton-l committed
22
23
24
25
    RandomHorizontalFlip,
    Resize,
    ToTensor,
)
anton-l's avatar
anton-l committed
26
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
27
28


29
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
104
105
106
107
108
109
110
111
112
113
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        default=True,
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )

192
193
194
195
196
197
198
199
200
201
    parser.add_argument(
        "--predict_mode",
        type=str,
        default="eps",
        help="What the model should predict. 'eps' to predict error, 'x0' to directly predict reconstruction",
    )

    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
223
def main(args):
224
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
225
    accelerator = Accelerator(
226
        gradient_accumulation_steps=args.gradient_accumulation_steps,
227
228
229
230
        mixed_precision=args.mixed_precision,
        log_with="tensorboard",
        logging_dir=logging_dir,
    )
anton-l's avatar
anton-l committed
231

anton-l's avatar
anton-l committed
232
233
    model = UNet2DModel(
        sample_size=args.resolution,
234
235
        in_channels=3,
        out_channels=3,
anton-l's avatar
anton-l committed
236
237
238
239
240
241
242
243
244
        layers_per_block=2,
        block_out_channels=(128, 128, 256, 256, 512, 512),
        down_block_types=(
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "AttnDownBlock2D",
            "DownBlock2D",
245
        ),
anton-l's avatar
anton-l committed
246
247
248
249
250
251
252
        up_block_types=(
            "UpBlock2D",
            "AttnUpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
253
        ),
anton-l's avatar
anton-l committed
254
    )
255
    noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)
256
257
258
259
260
261
262
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
263
264
265

    augmentations = Compose(
        [
anton-l's avatar
anton-l committed
266
            Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
anton-l's avatar
anton-l committed
267
            CenterCrop(args.resolution),
anton-l's avatar
anton-l committed
268
269
            RandomHorizontalFlip(),
            ToTensor(),
anton-l's avatar
anton-l committed
270
            Normalize([0.5], [0.5]),
anton-l's avatar
anton-l committed
271
272
        ]
    )
273
274
275
276
277
278
279
280
281
282

    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
anton-l's avatar
anton-l committed
283
284
285
286
287

    def transforms(examples):
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

288
289
    logger.info(f"Dataset size: {len(dataset)}")

anton-l's avatar
anton-l committed
290
    dataset.set_transform(transforms)
291
292
293
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
294

anton-l's avatar
anton-l committed
295
    lr_scheduler = get_scheduler(
296
        args.lr_scheduler,
anton-l's avatar
anton-l committed
297
        optimizer=optimizer,
298
        num_warmup_steps=args.lr_warmup_steps,
anton-l's avatar
anton-l committed
299
        num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
anton-l's avatar
anton-l committed
300
301
302
303
304
305
    )

    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )

306
307
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)

308
    ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay)
anton-l's avatar
anton-l committed
309

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
anton-l's avatar
anton-l committed
326

327
328
329
330
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

anton-l's avatar
anton-l committed
331
    global_step = 0
anton-l's avatar
anton-l committed
332
    for epoch in range(args.num_epochs):
anton-l's avatar
anton-l committed
333
        model.train()
334
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
335
336
337
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
            clean_images = batch["input"]
338
339
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
340
            bsz = clean_images.shape[0]
341
342
            # Sample a random timestep for each image
            timesteps = torch.randint(
343
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
344
            ).long()
345

346
            # Add noise to the clean images according to the noise magnitude at each timestep
347
            # (this is the forward diffusion process)
348
349
350
351
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
352
353
354
355
356
357
358
359
360
361
362
363
364
365
                model_output = model(noisy_images, timesteps).sample

                if args.predict_mode == "eps":
                    loss = F.mse_loss(model_output, noise)  # this could have different weights!
                elif args.predict_mode == "x0":
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
                    loss = snr_weights * F.mse_loss(
                        model_output, clean_images, reduction="none"
                    )  # use SNR weighting from distillation paper
                    loss = loss.mean()

366
                accelerator.backward(loss)
367

368
369
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
370
371
                optimizer.step()
                lr_scheduler.step()
372
373
                if args.use_ema:
                    ema_model.step(model)
374
                optimizer.zero_grad()
375

376
377
378
379
380
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

381
382
383
384
385
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
                logs["ema_decay"] = ema_model.decay
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
386
        progress_bar.close()
anton-l's avatar
anton-l committed
387

anton-l's avatar
anton-l committed
388
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
389

anton-l's avatar
anton-l committed
390
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
391
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
392
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
393
394
395
                pipeline = DDPMPipeline(
                    unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
396
                )
anton-l's avatar
anton-l committed
397
398

                generator = torch.manual_seed(0)
anton-l's avatar
anton-l committed
399
                # run pipeline in inference (sample random noise and denoise)
400
401
402
403
404
405
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
                    output_type="numpy",
                    predict_epsilon=args.predict_mode == "eps",
                ).images
anton-l's avatar
anton-l committed
406

anton-l's avatar
anton-l committed
407
408
409
410
411
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
                accelerator.trackers[0].writer.add_images(
                    "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                )
anton-l's avatar
anton-l committed
412

413
414
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
415
                pipeline.save_pretrained(args.output_dir)
416
                if args.push_to_hub:
417
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
418
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
419

420
421
    accelerator.end_training()

anton-l's avatar
anton-l committed
422
423

if __name__ == "__main__":
424
    args = parse_args()
anton-l's avatar
anton-l committed
425
    main(args)