"vscode:/vscode.git/clone" did not exist on "4d8b0414f702eb4be62cf42cd5c9ef7fec7e3dee"
ddim.py 6.04 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

Patrick von Platen's avatar
Patrick von Platen committed
16
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
17
18

from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
19
from .schedulers_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule
Patrick von Platen's avatar
Patrick von Platen committed
20
21


Patrick von Platen's avatar
Patrick von Platen committed
22
class DDIMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
27
28
29
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        clip_predicted_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
30
        tensor_format="np",
Patrick von Platen's avatar
Patrick von Platen committed
31
32
33
34
35
36
37
38
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )
Patrick von Platen's avatar
Patrick von Platen committed
39
        self.timesteps = int(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
        self.clip_image = clip_predicted_image

        if beta_schedule == "linear":
Patrick von Platen's avatar
Patrick von Platen committed
43
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
Patrick von Platen's avatar
Patrick von Platen committed
44
45
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
Patrick von Platen's avatar
Patrick von Platen committed
46
            self.betas = betas_for_alpha_bar(
Patrick von Platen's avatar
Patrick von Platen committed
47
48
49
50
51
52
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

    #        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
    # TODO(PVP) - check how much of these is actually necessary!
    # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
    # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
    #        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
    #        if variance_type == "fixed_small":
    #            log_variance = torch.log(variance.clamp(min=1e-20))
    #        elif variance_type == "fixed_large":
    #            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
    #
    #
    #        self.register_buffer("log_variance", log_variance.to(torch.float32))
Patrick von Platen's avatar
Patrick von Platen committed
71

anton-l's avatar
anton-l committed
72
73
74
75
76
77
78
79
80
    def rescale_betas(self, num_timesteps):
        if self.beta_schedule == "linear":
            scale = self.timesteps / num_timesteps
            self.betas = linear_beta_schedule(
                num_timesteps, beta_start=self.beta_start * scale, beta_end=self.beta_end * scale
            )
            self.alphas = 1.0 - self.betas
            self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
84
85
86
87
88
    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
Patrick von Platen's avatar
Patrick von Platen committed
89
            return self.one
Patrick von Platen's avatar
Patrick von Platen committed
90
91
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
    def get_orig_t(self, t, num_inference_steps):
        if t < 0:
            return -1
Patrick von Platen's avatar
Patrick von Platen committed
95
        return self.timesteps // num_inference_steps * t
Patrick von Platen's avatar
Patrick von Platen committed
96

Patrick von Platen's avatar
Patrick von Platen committed
97
    def get_variance(self, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
98
99
        orig_t = self.get_orig_t(t, num_inference_steps)
        orig_prev_t = self.get_orig_t(t - 1, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
100
101
102
103
104
105
106
107
108
109

        alpha_prod_t = self.get_alpha_prod(orig_t)
        alpha_prod_t_prev = self.get_alpha_prod(orig_prev_t)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

Patrick von Platen's avatar
Patrick von Platen committed
110
    def step(self, residual, image, t, num_inference_steps, eta):
Patrick von Platen's avatar
Patrick von Platen committed
111
112
113
114
115
116
117
118
119
120
121
122
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"

        # 1. get actual t and t-1
Patrick von Platen's avatar
Patrick von Platen committed
123
124
        orig_t = self.get_orig_t(t, num_inference_steps)
        orig_prev_t = self.get_orig_t(t - 1, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
125
126
127
128
129
130
131
132

        # 2. compute alphas, betas
        alpha_prod_t = self.get_alpha_prod(orig_t)
        alpha_prod_t_prev = self.get_alpha_prod(orig_prev_t)
        beta_prod_t = 1 - alpha_prod_t

        # 3. compute predicted original image from predicted noise also called
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
133
        pred_original_image = (image - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
134
135
136

        # 4. Clip "predicted x_0"
        if self.clip_image:
Patrick von Platen's avatar
Patrick von Platen committed
137
            pred_original_image = self.clip(pred_original_image, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140
141

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self.get_variance(t, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
142
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
143
144

        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
145
        pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * residual
Patrick von Platen's avatar
Patrick von Platen committed
146
147

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
148
        pred_prev_image = alpha_prod_t_prev ** (0.5) * pred_original_image + pred_image_direction
Patrick von Platen's avatar
Patrick von Platen committed
149
150
151
152

        return pred_prev_image

    def __len__(self):
Patrick von Platen's avatar
Patrick von Platen committed
153
        return self.timesteps