qwenimage.md 3.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->

# QwenImage

17
18
19
Qwen-Image from the Qwen team is an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. Experiments show strong general capabilities in both image generation and editing, with exceptional performance in text rendering, especially for Chinese.

Check out the model card [here](https://huggingface.co/Qwen/Qwen-Image) to learn more.
20
21
22
23
24
25
26

<Tip>

Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.

</Tip>

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
## LoRA for faster inference

Use a LoRA from `lightx2v/Qwen-Image-Lightning` to speed up inference by reducing the
number of steps. Refer to the code snippet below:

<details>
<summary>Code</summary>

```py
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
import torch 
import math

ckpt_id = "Qwen/Qwen-Image"

# From
# https://github.com/ModelTC/Qwen-Image-Lightning/blob/342260e8f5468d2f24d084ce04f55e101007118b/generate_with_diffusers.py#L82C9-L97C10
scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": math.log(3),  # We use shift=3 in distillation
    "invert_sigmas": False,
    "max_image_seq_len": 8192,
    "max_shift": math.log(3),  # We use shift=3 in distillation
    "num_train_timesteps": 1000,
    "shift": 1.0,
    "shift_terminal": None,  # set shift_terminal to None
    "stochastic_sampling": False,
    "time_shift_type": "exponential",
    "use_beta_sigmas": False,
    "use_dynamic_shifting": True,
    "use_exponential_sigmas": False,
    "use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = DiffusionPipeline.from_pretrained(
    ckpt_id, scheduler=scheduler, torch_dtype=torch.bfloat16
).to("cuda")
pipe.load_lora_weights(
    "lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.0.safetensors"
)

prompt = "a tiny astronaut hatching from an egg on the moon, Ultra HD, 4K, cinematic composition."
negative_prompt = " "
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=1024,
    height=1024,
    num_inference_steps=8,
    true_cfg_scale=1.0,
    generator=torch.manual_seed(0),
).images[0]
image.save("qwen_fewsteps.png")
```

</details>

84
85
86
87
88
89
## QwenImagePipeline

[[autodoc]] QwenImagePipeline
  - all
  - __call__

90
## QwenImagePipelineOutput
91
92

[[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput