checkpoint_merger.py 12.4 KB
Newer Older
1
2
3
4
import glob
import os
from typing import Dict, List, Union

5
import safetensors.torch
6
import torch
7
8
from huggingface_hub import snapshot_download

9
from diffusers import DiffusionPipeline, __version__
10
11
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import CONFIG_NAME, DIFFUSERS_CACHE, ONNX_WEIGHTS_NAME, WEIGHTS_NAME
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35


class CheckpointMergerPipeline(DiffusionPipeline):
    """
    A class that that supports merging diffusion models based on the discussion here:
    https://github.com/huggingface/diffusers/issues/877

    Example usage:-

    pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py")

    merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True)

    merged_pipe.to('cuda')

    prompt = "An astronaut riding a unicycle on Mars"

    results = merged_pipe(prompt)

    ## For more details, see the docstring for the merge method.

    """

    def __init__(self):
36
        self.register_to_config()
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        super().__init__()

    def _compare_model_configs(self, dict0, dict1):
        if dict0 == dict1:
            return True
        else:
            config0, meta_keys0 = self._remove_meta_keys(dict0)
            config1, meta_keys1 = self._remove_meta_keys(dict1)
            if config0 == config1:
                print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.")
                return True
        return False

    def _remove_meta_keys(self, config_dict: Dict):
        meta_keys = []
        temp_dict = config_dict.copy()
        for key in config_dict.keys():
            if key.startswith("_"):
                temp_dict.pop(key)
                meta_keys.append(key)
        return (temp_dict, meta_keys)

    @torch.no_grad()
    def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs):
        """
        Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed
        in the argument 'pretrained_model_name_or_path_list' as a list.

        Parameters:
        -----------
            pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format.

            **kwargs:
                Supports all the default DiffusionPipeline.get_config_dict kwargs viz..

                cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map.

                alpha - The interpolation parameter. Ranges from 0 to 1.  It affects the ratio in which the checkpoints are merged. A 0.8 alpha
                    would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2

77
78
                interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_diff" and None.
                    Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_diff" is supported.
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

                force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False.

        """
        # Default kwargs from DiffusionPipeline
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        torch_dtype = kwargs.pop("torch_dtype", None)
        device_map = kwargs.pop("device_map", None)

        alpha = kwargs.pop("alpha", 0.5)
        interp = kwargs.pop("interp", None)

97
98
        print("Received list", pretrained_model_name_or_path_list)
        print(f"Combining with alpha={alpha}, interpolation mode={interp}")
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

        checkpoint_count = len(pretrained_model_name_or_path_list)
        # Ignore result from model_index_json comparision of the two checkpoints
        force = kwargs.pop("force", False)

        # If less than 2 checkpoints, nothing to merge. If more than 3, not supported for now.
        if checkpoint_count > 3 or checkpoint_count < 2:
            raise ValueError(
                "Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being"
                " passed."
            )

        print("Received the right number of checkpoints")
        # chkpt0, chkpt1 = pretrained_model_name_or_path_list[0:2]
        # chkpt2 = pretrained_model_name_or_path_list[2] if checkpoint_count == 3 else None

        # Validate that the checkpoints can be merged
        # Step 1: Load the model config and compare the checkpoints. We'll compare the model_index.json first while ignoring the keys starting with '_'
        config_dicts = []
        for pretrained_model_name_or_path in pretrained_model_name_or_path_list:
119
120
121
122
123
124
125
126
127
128
            config_dict = DiffusionPipeline.load_config(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
            )
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
            config_dicts.append(config_dict)

        comparison_result = True
        for idx in range(1, len(config_dicts)):
            comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx])
            if not force and comparison_result is False:
                raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.")
                print(config_dicts[0], config_dicts[1])
        print("Compatible model_index.json files found")
        # Step 2: Basic Validation has succeeded. Let's download the models and save them into our local files.
        cached_folders = []
        for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts):
            folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
            allow_patterns = [os.path.join(k, "*") for k in folder_names]
            allow_patterns += [
                WEIGHTS_NAME,
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                ONNX_WEIGHTS_NAME,
                DiffusionPipeline.config_name,
            ]
            requested_pipeline_class = config_dict.get("_class_name")
            user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class}

153
154
155
156
157
158
159
160
161
162
163
164
165
166
            cached_folder = (
                pretrained_model_name_or_path
                if os.path.isdir(pretrained_model_name_or_path)
                else snapshot_download(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    revision=revision,
                    allow_patterns=allow_patterns,
                    user_agent=user_agent,
                )
167
168
169
170
171
            )
            print("Cached Folder", cached_folder)
            cached_folders.append(cached_folder)

        # Step 3:-
172
        # Load the first checkpoint as a diffusion pipeline and modify its module state_dict in place
173
174
175
        final_pipe = DiffusionPipeline.from_pretrained(
            cached_folders[0], torch_dtype=torch_dtype, device_map=device_map
        )
176
        final_pipe.to(self.device)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

        checkpoint_path_2 = None
        if len(cached_folders) > 2:
            checkpoint_path_2 = os.path.join(cached_folders[2])

        if interp == "sigmoid":
            theta_func = CheckpointMergerPipeline.sigmoid
        elif interp == "inv_sigmoid":
            theta_func = CheckpointMergerPipeline.inv_sigmoid
        elif interp == "add_diff":
            theta_func = CheckpointMergerPipeline.add_difference
        else:
            theta_func = CheckpointMergerPipeline.weighted_sum

        # Find each module's state dict.
        for attr in final_pipe.config.keys():
            if not attr.startswith("_"):
                checkpoint_path_1 = os.path.join(cached_folders[1], attr)
                if os.path.exists(checkpoint_path_1):
196
197
198
199
                    files = [
                        *glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")),
                        *glob.glob(os.path.join(checkpoint_path_1, "*.bin")),
                    ]
200
                    checkpoint_path_1 = files[0] if len(files) > 0 else None
201
202
203
204
205
                if len(cached_folders) < 3:
                    checkpoint_path_2 = None
                else:
                    checkpoint_path_2 = os.path.join(cached_folders[2], attr)
                    if os.path.exists(checkpoint_path_2):
206
207
208
209
                        files = [
                            *glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")),
                            *glob.glob(os.path.join(checkpoint_path_2, "*.bin")),
                        ]
210
                        checkpoint_path_2 = files[0] if len(files) > 0 else None
211
212
213
                # For an attr if both checkpoint_path_1 and 2 are None, ignore.
                # If atleast one is present, deal with it according to interp method, of course only if the state_dict keys match.
                if checkpoint_path_1 is None and checkpoint_path_2 is None:
214
                    print(f"Skipping {attr}: not present in 2nd or 3d model")
215
216
217
                    continue
                try:
                    module = getattr(final_pipe, attr)
218
219
                    if isinstance(module, bool):  # ignore requires_safety_checker boolean
                        continue
220
221
222
223
                    theta_0 = getattr(module, "state_dict")
                    theta_0 = theta_0()

                    update_theta_0 = getattr(module, "load_state_dict")
224
225
                    theta_1 = (
                        safetensors.torch.load_file(checkpoint_path_1)
226
                        if (checkpoint_path_1.endswith(".safetensors"))
227
228
229
230
231
232
                        else torch.load(checkpoint_path_1, map_location="cpu")
                    )
                    theta_2 = None
                    if checkpoint_path_2:
                        theta_2 = (
                            safetensors.torch.load_file(checkpoint_path_2)
233
                            if (checkpoint_path_2.endswith(".safetensors"))
234
235
                            else torch.load(checkpoint_path_2, map_location="cpu")
                        )
236
237

                    if not theta_0.keys() == theta_1.keys():
238
                        print(f"Skipping {attr}: key mismatch")
239
240
                        continue
                    if theta_2 and not theta_1.keys() == theta_2.keys():
241
242
243
                        print(f"Skipping {attr}:y mismatch")
                except Exception as e:
                    print(f"Skipping {attr} do to an unexpected error: {str(e)}")
244
                    continue
245
                print(f"MERGING {attr}")
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

                for key in theta_0.keys():
                    if theta_2:
                        theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha)
                    else:
                        theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha)

                del theta_1
                del theta_2
                update_theta_0(theta_0)

                del theta_0
        return final_pipe

    @staticmethod
    def weighted_sum(theta0, theta1, theta2, alpha):
        return ((1 - alpha) * theta0) + (alpha * theta1)

    # Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
    @staticmethod
    def sigmoid(theta0, theta1, theta2, alpha):
        alpha = alpha * alpha * (3 - (2 * alpha))
        return theta0 + ((theta1 - theta0) * alpha)

    # Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
    @staticmethod
    def inv_sigmoid(theta0, theta1, theta2, alpha):
        import math

        alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
        return theta0 + ((theta1 - theta0) * alpha)

    @staticmethod
    def add_difference(theta0, theta1, theta2, alpha):
        return theta0 + (theta1 - theta2) * (1.0 - alpha)