lpw_stable_diffusion_xl.py 105 KB
Newer Older
1
2
3
4
## ----------------------------------------------------------
# A SDXL pipeline can take unlimited weighted prompt
#
# Author: Andrew Zhu
5
# GitHub: https://github.com/xhinker
6
7
8
9
10
11
12
13
# Medium: https://medium.com/@xhinker
## -----------------------------------------------------------

import inspect
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
14
from PIL import Image
15
16
17
18
19
20
21
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)
22
23

from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
24
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
25
26
27
from diffusers.loaders import (
    FromSingleFileMixin,
    IPAdapterMixin,
28
    StableDiffusionXLLoraLoaderMixin,
29
30
    TextualInversionLoaderMixin,
)
31
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
32
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
33
from diffusers.models.lora import adjust_lora_scale_text_encoder
34
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
35
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
36
37
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
38
    USE_PEFT_BACKEND,
39
    deprecate,
40
41
42
43
44
    is_accelerate_available,
    is_accelerate_version,
    is_invisible_watermark_available,
    logging,
    replace_example_docstring,
45
46
    scale_lora_layers,
    unscale_lora_layers,
47
)
Dhruv Nair's avatar
Dhruv Nair committed
48
from diffusers.utils.torch_utils import randn_tensor
49
50
51
52
53
54
55
56
57
58
59
60
61


if is_invisible_watermark_available():
    from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker


def parse_prompt_attention(text):
    """
    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
    Accepted tokens are:
      (abc) - increases attention to abc by a multiplier of 1.1
      (abc:3.12) - increases attention to abc by a multiplier of 3.12
      [abc] - decreases attention to abc by a multiplier of 1.1
62
63
64
65
      \\( - literal character '('
      \\[ - literal character '['
      \\) - literal character ')'
      \\] - literal character ']'
66
67
68
69
70
71
72
73
74
      \\ - literal character '\'
      anything else - just text

    >>> parse_prompt_attention('normal text')
    [['normal text', 1.0]]
    >>> parse_prompt_attention('an (important) word')
    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
    >>> parse_prompt_attention('(unbalanced')
    [['unbalanced', 1.1]]
75
    >>> parse_prompt_attention('\\(literal\\]')
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    [['(literal]', 1.0]]
    >>> parse_prompt_attention('(unnecessary)(parens)')
    [['unnecessaryparens', 1.1]]
    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
    [['a ', 1.0],
     ['house', 1.5730000000000004],
     [' ', 1.1],
     ['on', 1.0],
     [' a ', 1.1],
     ['hill', 0.55],
     [', sun, ', 1.1],
     ['sky', 1.4641000000000006],
     ['.', 1.1]]
    """
    import re

    re_attention = re.compile(
        r"""
            \\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
            \)|]|[^\\()\[\]:]+|:
        """,
        re.X,
    )

    re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)

    res = []
    round_brackets = []
    square_brackets = []

    round_bracket_multiplier = 1.1
    square_bracket_multiplier = 1 / 1.1

    def multiply_range(start_position, multiplier):
        for p in range(start_position, len(res)):
            res[p][1] *= multiplier

    for m in re_attention.finditer(text):
        text = m.group(0)
        weight = m.group(1)

        if text.startswith("\\"):
            res.append([text[1:], 1.0])
        elif text == "(":
            round_brackets.append(len(res))
        elif text == "[":
            square_brackets.append(len(res))
        elif weight is not None and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), float(weight))
        elif text == ")" and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), round_bracket_multiplier)
        elif text == "]" and len(square_brackets) > 0:
            multiply_range(square_brackets.pop(), square_bracket_multiplier)
        else:
            parts = re.split(re_break, text)
            for i, part in enumerate(parts):
                if i > 0:
                    res.append(["BREAK", -1])
                res.append([part, 1.0])

    for pos in round_brackets:
        multiply_range(pos, round_bracket_multiplier)

    for pos in square_brackets:
        multiply_range(pos, square_bracket_multiplier)

    if len(res) == 0:
        res = [["", 1.0]]

    # merge runs of identical weights
    i = 0
    while i + 1 < len(res):
        if res[i][1] == res[i + 1][1]:
            res[i][0] += res[i + 1][0]
            res.pop(i + 1)
        else:
            i += 1

    return res


def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str):
    """
    Get prompt token ids and weights, this function works for both prompt and negative prompt

    Args:
        pipe (CLIPTokenizer)
            A CLIPTokenizer
        prompt (str)
            A prompt string with weights

    Returns:
        text_tokens (list)
            A list contains token ids
        text_weight (list)
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
171
            A list contains the correspondent weight of token ids
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

    Example:
        import torch
        from transformers import CLIPTokenizer

        clip_tokenizer = CLIPTokenizer.from_pretrained(
            "stablediffusionapi/deliberate-v2"
            , subfolder = "tokenizer"
            , dtype = torch.float16
        )

        token_id_list, token_weight_list = get_prompts_tokens_with_weights(
            clip_tokenizer = clip_tokenizer
            ,prompt = "a (red:1.5) cat"*70
        )
    """
    texts_and_weights = parse_prompt_attention(prompt)
    text_tokens, text_weights = [], []
    for word, weight in texts_and_weights:
        # tokenize and discard the starting and the ending token
        token = clip_tokenizer(word, truncation=False).input_ids[1:-1]  # so that tokenize whatever length prompt
        # the returned token is a 1d list: [320, 1125, 539, 320]

        # merge the new tokens to the all tokens holder: text_tokens
        text_tokens = [*text_tokens, *token]

        # each token chunk will come with one weight, like ['red cat', 2.0]
        # need to expand weight for each token.
        chunk_weights = [weight] * len(token)

        # append the weight back to the weight holder: text_weights
        text_weights = [*text_weights, *chunk_weights]
    return text_tokens, text_weights


def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False):
    """
    Produce tokens and weights in groups and pad the missing tokens

    Args:
        token_ids (list)
            The token ids from tokenizer
        weights (list)
            The weights list from function get_prompts_tokens_with_weights
        pad_last_block (bool)
            Control if fill the last token list to 75 tokens with eos
    Returns:
        new_token_ids (2d list)
        new_weights (2d list)

    Example:
        token_groups,weight_groups = group_tokens_and_weights(
            token_ids = token_id_list
            , weights = token_weight_list
        )
    """
    bos, eos = 49406, 49407

    # this will be a 2d list
    new_token_ids = []
    new_weights = []
    while len(token_ids) >= 75:
        # get the first 75 tokens
        head_75_tokens = [token_ids.pop(0) for _ in range(75)]
        head_75_weights = [weights.pop(0) for _ in range(75)]

        # extract token ids and weights
        temp_77_token_ids = [bos] + head_75_tokens + [eos]
        temp_77_weights = [1.0] + head_75_weights + [1.0]

        # add 77 token and weights chunk to the holder list
        new_token_ids.append(temp_77_token_ids)
        new_weights.append(temp_77_weights)

    # padding the left
    if len(token_ids) > 0:
        padding_len = 75 - len(token_ids) if pad_last_block else 0

        temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
        new_token_ids.append(temp_77_token_ids)

        temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
        new_weights.append(temp_77_weights)

    return new_token_ids, new_weights


def get_weighted_text_embeddings_sdxl(
    pipe: StableDiffusionXLPipeline,
    prompt: str = "",
    prompt_2: str = None,
    neg_prompt: str = "",
    neg_prompt_2: str = None,
265
    num_images_per_prompt: int = 1,
266
    device: Optional[torch.device] = None,
267
    clip_skip: Optional[int] = None,
268
    lora_scale: Optional[int] = None,
269
270
271
272
273
274
275
276
277
278
279
):
    """
    This function can process long prompt with weights, no length limitation
    for Stable Diffusion XL

    Args:
        pipe (StableDiffusionPipeline)
        prompt (str)
        prompt_2 (str)
        neg_prompt (str)
        neg_prompt_2 (str)
280
        num_images_per_prompt (int)
281
        device (torch.device)
282
        clip_skip (int)
283
284
285
286
    Returns:
        prompt_embeds (torch.Tensor)
        neg_prompt_embeds (torch.Tensor)
    """
287
288
    device = device or pipe._execution_device

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(pipe, StableDiffusionXLLoraLoaderMixin):
        pipe._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        if pipe.text_encoder is not None:
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
            else:
                scale_lora_layers(pipe.text_encoder, lora_scale)

        if pipe.text_encoder_2 is not None:
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(pipe.text_encoder_2, lora_scale)
            else:
                scale_lora_layers(pipe.text_encoder_2, lora_scale)

307
308
309
310
311
312
    if prompt_2:
        prompt = f"{prompt} {prompt_2}"

    if neg_prompt_2:
        neg_prompt = f"{neg_prompt} {neg_prompt_2}"

313
314
315
316
317
318
319
320
321
    prompt_t1 = prompt_t2 = prompt
    neg_prompt_t1 = neg_prompt_t2 = neg_prompt

    if isinstance(pipe, TextualInversionLoaderMixin):
        prompt_t1 = pipe.maybe_convert_prompt(prompt_t1, pipe.tokenizer)
        neg_prompt_t1 = pipe.maybe_convert_prompt(neg_prompt_t1, pipe.tokenizer)
        prompt_t2 = pipe.maybe_convert_prompt(prompt_t2, pipe.tokenizer_2)
        neg_prompt_t2 = pipe.maybe_convert_prompt(neg_prompt_t2, pipe.tokenizer_2)

322
323
324
    eos = pipe.tokenizer.eos_token_id

    # tokenizer 1
325
326
    prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt_t1)
    neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt_t1)
327
328

    # tokenizer 2
329
330
    prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt_t2)
    neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt_t2)
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

    # padding the shorter one for prompt set 1
    prompt_token_len = len(prompt_tokens)
    neg_prompt_token_len = len(neg_prompt_tokens)

    if prompt_token_len > neg_prompt_token_len:
        # padding the neg_prompt with eos token
        neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
        neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
    else:
        # padding the prompt
        prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
        prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)

    # padding the shorter one for token set 2
    prompt_token_len_2 = len(prompt_tokens_2)
    neg_prompt_token_len_2 = len(neg_prompt_tokens_2)

    if prompt_token_len_2 > neg_prompt_token_len_2:
        # padding the neg_prompt with eos token
        neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
        neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
    else:
        # padding the prompt
        prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
        prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)

    embeds = []
    neg_embeds = []

    prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())

    neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights(
        neg_prompt_tokens.copy(), neg_prompt_weights.copy()
    )

    prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights(
        prompt_tokens_2.copy(), prompt_weights_2.copy()
    )

    neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights(
        neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
    )

    # get prompt embeddings one by one is not working.
    for i in range(len(prompt_token_groups)):
        # get positive prompt embeddings with weights
378
379
        token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=device)
        weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=device)
380

381
        token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=device)
382
383

        # use first text encoder
384
        prompt_embeds_1 = pipe.text_encoder(token_tensor.to(device), output_hidden_states=True)
385
386

        # use second text encoder
387
        prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(device), output_hidden_states=True)
388
389
        pooled_prompt_embeds = prompt_embeds_2[0]

390
391
392
393
394
395
396
397
        if clip_skip is None:
            prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
            prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
        else:
            # "2" because SDXL always indexes from the penultimate layer.
            prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-(clip_skip + 2)]
            prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-(clip_skip + 2)]

398
399
400
401
402
403
404
405
406
407
408
409
410
        prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
        token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)

        for j in range(len(weight_tensor)):
            if weight_tensor[j] != 1.0:
                token_embedding[j] = (
                    token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
                )

        token_embedding = token_embedding.unsqueeze(0)
        embeds.append(token_embedding)

        # get negative prompt embeddings with weights
411
412
413
        neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=device)
        neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=device)
        neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=device)
414
415

        # use first text encoder
416
        neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(device), output_hidden_states=True)
417
418
419
        neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]

        # use second text encoder
420
        neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(device), output_hidden_states=True)
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
        negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]

        neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
        neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)

        for z in range(len(neg_weight_tensor)):
            if neg_weight_tensor[z] != 1.0:
                neg_token_embedding[z] = (
                    neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
                )

        neg_token_embedding = neg_token_embedding.unsqueeze(0)
        neg_embeds.append(neg_token_embedding)

    prompt_embeds = torch.cat(embeds, dim=1)
    negative_prompt_embeds = torch.cat(neg_embeds, dim=1)

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    seq_len = negative_prompt_embeds.shape[1]
    negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
    negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view(
        bs_embed * num_images_per_prompt, -1
    )
    negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view(
        bs_embed * num_images_per_prompt, -1
    )

455
456
457
458
459
460
461
462
463
464
    if pipe.text_encoder is not None:
        if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(pipe.text_encoder, lora_scale)

    if pipe.text_encoder_2 is not None:
        if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(pipe.text_encoder_2, lora_scale)

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds


# -------------------------------------------------------------------------------------------------------------------------------
# reuse the backbone code from StableDiffusionXLPipeline
# -------------------------------------------------------------------------------------------------------------------------------

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        from diffusers import DiffusionPipeline
        import torch

        pipe = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0"
            , torch_dtype       = torch.float16
            , use_safetensors   = True
            , variant           = "fp16"
            , custom_pipeline   = "lpw_stable_diffusion_xl",
        )

        prompt = "a white cat running on the grass"*20
        prompt2 = "play a football"*20
        prompt = f"{prompt},{prompt2}"
        neg_prompt = "blur, low quality"

        pipe.to("cuda")
        images = pipe(
            prompt                  = prompt
            , negative_prompt       = neg_prompt
        ).images[0]

        pipe.to("cpu")
        torch.cuda.empty_cache()
        images
        ```
"""


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Quentin Gallouédec's avatar
Quentin Gallouédec committed
510
    Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
511
512
513
514
515
516
517
518
519
520
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used,
            `timesteps` must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
                must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


580
class SDXLLongPromptWeightingPipeline(
581
582
583
584
    DiffusionPipeline,
    StableDiffusionMixin,
    FromSingleFileMixin,
    IPAdapterMixin,
585
    StableDiffusionXLLoraLoaderMixin,
586
    TextualInversionLoaderMixin,
587
):
588
589
590
    r"""
    Pipeline for text-to-image generation using Stable Diffusion XL.

591
592
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
593

594
595
596
    The pipeline also inherits the following loading methods:
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
597
598
        - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
599
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion XL uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([` CLIPTextModelWithProjection`]):
            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the
            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
            variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`CLIPTokenizer`):
            Second Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
620
621
        unet ([`UNet2DConditionModel`]):
            Conditional U-Net architecture to denoise the encoded image latents.
622
623
624
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
625
626
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
627
628
    """

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
    _optional_components = [
        "tokenizer",
        "tokenizer_2",
        "text_encoder",
        "text_encoder_2",
        "image_encoder",
        "feature_extractor",
    ]
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "add_text_embeds",
        "add_time_ids",
        "negative_pooled_prompt_embeds",
        "negative_add_time_ids",
    ]

648
649
650
651
652
653
654
655
656
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
657
658
        feature_extractor: Optional[CLIPImageProcessor] = None,
        image_encoder: Optional[CLIPVisionModelWithProjection] = None,
659
660
661
662
663
664
665
666
667
668
669
670
671
        force_zeros_for_empty_prompt: bool = True,
        add_watermarker: Optional[bool] = None,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            scheduler=scheduler,
672
673
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
674
675
        )
        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
hlky's avatar
hlky committed
676
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
677
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
678
679
680
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )
hlky's avatar
hlky committed
681
682
683
684
685
        self.default_sample_size = (
            self.unet.config.sample_size
            if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size")
            else 128
        )
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()

        if add_watermarker:
            self.watermark = StableDiffusionXLWatermarker()
        else:
            self.watermark = None

    def enable_model_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        model_sequence = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )
        model_sequence.extend([self.unet, self.vae])

        hook = None
        for cpu_offloaded_model in model_sequence:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        # We'll offload the last model manually.
        self.final_offload_hook = hook

724
    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
725
726
727
728
729
730
731
732
733
    def encode_prompt(
        self,
        prompt: str,
        prompt_2: Optional[str] = None,
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
734
735
736
737
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        lora_scale: Optional[float] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
762
            prompt_embeds (`torch.Tensor`, *optional*):
763
764
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
765
            negative_prompt_embeds (`torch.Tensor`, *optional*):
766
767
768
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
769
            pooled_prompt_embeds (`torch.Tensor`, *optional*):
770
771
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
772
            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
773
774
775
776
777
778
779
780
781
782
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
783
        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
            self._lora_scale = lora_scale

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )

        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
co63oc's avatar
co63oc committed
801
            # textual inversion: process multi-vector tokens if necessary
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
            prompt_embeds_list = []
            prompts = [prompt, prompt_2]
            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    prompt = self.maybe_convert_prompt(prompt, tokenizer)

                text_inputs = tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                text_input_ids = text_inputs.input_ids
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                    text_input_ids, untruncated_ids
                ):
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {tokenizer.model_max_length} tokens: {removed_text}"
                    )

                prompt_embeds = text_encoder(
                    text_input_ids.to(device),
                    output_hidden_states=True,
                )

                # We are only ALWAYS interested in the pooled output of the final text encoder
834
835
836
                if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
                    pooled_prompt_embeds = prompt_embeds[0]

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
                prompt_embeds = prompt_embeds.hidden_states[-2]

                prompt_embeds_list.append(prompt_embeds)

            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        # get unconditional embeddings for classifier free guidance
        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        elif do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt

            uncond_tokens: List[str]
            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt, negative_prompt_2]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = [negative_prompt, negative_prompt_2]

            negative_prompt_embeds_list = []
            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)

                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
888
889
                if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
                    negative_pooled_prompt_embeds = negative_prompt_embeds[0]
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )
        if do_classifier_free_guidance:
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
                bs_embed * num_images_per_prompt, -1
            )

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

944
945
946
947
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
Quentin Gallouédec's avatar
Quentin Gallouédec committed
948
        # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        prompt_2,
        height,
        width,
968
        strength,
969
970
971
972
973
974
975
        callback_steps,
        negative_prompt=None,
        negative_prompt_2=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        pooled_prompt_embeds=None,
        negative_pooled_prompt_embeds=None,
976
        callback_on_step_end_tensor_inputs=None,
977
978
979
980
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

981
982
983
        if strength < 0 or strength > 1:
            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")

984
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
985
986
987
988
989
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

990
991
992
993
994
995
996
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt_2 is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if prompt_embeds is not None and pooled_prompt_embeds is None:
            raise ValueError(
                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
            )

        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
            raise ValueError(
                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
            )

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
    def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
        # get the original timestep using init_timestep
        if denoising_start is None:
            init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
            t_start = max(num_inference_steps - init_timestep, 0)
        else:
            t_start = 0

        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]

        # Strength is irrelevant if we directly request a timestep to start at;
        # that is, strength is determined by the denoising_start instead.
        if denoising_start is not None:
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (denoising_start * self.scheduler.config.num_train_timesteps)
                )
1063
1064
            )

1065
1066
1067
1068
1069
1070
            num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
            if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
                # if the scheduler is a 2nd order scheduler we might have to do +1
                # because `num_inference_steps` might be even given that every timestep
                # (except the highest one) is duplicated. If `num_inference_steps` is even it would
                # mean that we cut the timesteps in the middle of the denoising step
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1071
                # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
                # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
                num_inference_steps = num_inference_steps + 1

            # because t_n+1 >= t_n, we slice the timesteps starting from the end
            timesteps = timesteps[-num_inference_steps:]
            return timesteps, num_inference_steps

        return timesteps, num_inference_steps - t_start

    def prepare_latents(
        self,
        image,
        mask,
        width,
        height,
        num_channels_latents,
        timestep,
        batch_size,
        num_images_per_prompt,
        dtype,
        device,
        generator=None,
        add_noise=True,
        latents=None,
        is_strength_max=True,
        return_noise=False,
        return_image_latents=False,
    ):
        batch_size *= num_images_per_prompt

        if image is None:
1103
1104
1105
1106
1107
1108
            shape = (
                batch_size,
                num_channels_latents,
                int(height) // self.vae_scale_factor,
                int(width) // self.vae_scale_factor,
            )
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            if latents is None:
                latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            else:
                latents = latents.to(device)

            # scale the initial noise by the standard deviation required by the scheduler
            latents = latents * self.scheduler.init_noise_sigma
            return latents

        elif mask is None:
            if not isinstance(image, (torch.Tensor, Image.Image, list)):
                raise ValueError(
                    f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
                )

            # Offload text encoder if `enable_model_cpu_offload` was enabled
            if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
                self.text_encoder_2.to("cpu")
                torch.cuda.empty_cache()

            image = image.to(device=device, dtype=dtype)

            if image.shape[1] == 4:
                init_latents = image

            else:
                # make sure the VAE is in float32 mode, as it overflows in float16
                if self.vae.config.force_upcast:
                    image = image.float()
                    self.vae.to(dtype=torch.float32)

                if isinstance(generator, list) and len(generator) != batch_size:
                    raise ValueError(
                        f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                        f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                    )

                elif isinstance(generator, list):
                    init_latents = [
                        retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                        for i in range(batch_size)
                    ]
                    init_latents = torch.cat(init_latents, dim=0)
                else:
                    init_latents = retrieve_latents(self.vae.encode(image), generator=generator)

                if self.vae.config.force_upcast:
                    self.vae.to(dtype)

                init_latents = init_latents.to(dtype)
                init_latents = self.vae.config.scaling_factor * init_latents

            if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
                # expand init_latents for batch_size
                additional_image_per_prompt = batch_size // init_latents.shape[0]
                init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
            elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
                raise ValueError(
                    f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
                )
            else:
                init_latents = torch.cat([init_latents], dim=0)

            if add_noise:
                shape = init_latents.shape
                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
                # get latents
                init_latents = self.scheduler.add_noise(init_latents, noise, timestep)

            latents = init_latents
            return latents

1187
        else:
1188
1189
1190
1191
1192
1193
            shape = (
                batch_size,
                num_channels_latents,
                int(height) // self.vae_scale_factor,
                int(width) // self.vae_scale_factor,
            )
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            if (image is None or timestep is None) and not is_strength_max:
                raise ValueError(
                    "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
                    "However, either the image or the noise timestep has not been provided."
                )

            if image.shape[1] == 4:
                image_latents = image.to(device=device, dtype=dtype)
                image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
            elif return_image_latents or (latents is None and not is_strength_max):
                image = image.to(device=device, dtype=dtype)
                image_latents = self._encode_vae_image(image=image, generator=generator)
                image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)

            if latents is None and add_noise:
                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
                # if strength is 1. then initialise the latents to noise, else initial to image + noise
                latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
                # if pure noise then scale the initial latents by the  Scheduler's init sigma
                latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
            elif add_noise:
                noise = latents.to(device)
                latents = noise * self.scheduler.init_noise_sigma
            else:
                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
                latents = image_latents.to(device)

            outputs = (latents,)

            if return_noise:
                outputs += (noise,)

            if return_image_latents:
                outputs += (image_latents,)

            return outputs

    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
        dtype = image.dtype
        if self.vae.config.force_upcast:
            image = image.float()
            self.vae.to(dtype=torch.float32)

        if isinstance(generator, list):
            image_latents = [
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                for i in range(image.shape[0])
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)

        if self.vae.config.force_upcast:
            self.vae.to(dtype)

        image_latents = image_latents.to(dtype)
        image_latents = self.vae.config.scaling_factor * image_latents

        return image_latents

    def prepare_mask_latents(
        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask = torch.nn.functional.interpolate(
            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
        )
        mask = mask.to(device=device, dtype=dtype)

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)

        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask

        if masked_image is not None and masked_image.shape[1] == 4:
            masked_image_latents = masked_image
        else:
            masked_image_latents = None

        if masked_image is not None:
            if masked_image_latents is None:
                masked_image = masked_image.to(device=device, dtype=dtype)
                masked_image_latents = self._encode_vae_image(masked_image, generator=generator)

            if masked_image_latents.shape[0] < batch_size:
                if not batch_size % masked_image_latents.shape[0] == 0:
                    raise ValueError(
                        "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                        f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                        " Make sure the number of images that you pass is divisible by the total requested batch size."
                    )
                masked_image_latents = masked_image_latents.repeat(
                    batch_size // masked_image_latents.shape[0], 1, 1, 1
                )

            masked_image_latents = (
                torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
            )

            # aligning device to prevent device errors when concating it with the latent model input
            masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
1310

1311
        return mask, masked_image_latents
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

    def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
        add_time_ids = list(original_size + crops_coords_top_left + target_size)

        passed_add_embed_dim = (
            self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
        )
        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features

        if expected_add_embed_dim != passed_add_embed_dim:
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
            )

        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        return add_time_ids

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
    def upcast_vae(self):
        dtype = self.vae.dtype
        self.vae.to(dtype=torch.float32)
        use_torch_2_0_or_xformers = isinstance(
            self.vae.decoder.mid_block.attentions[0].processor,
1335
            (AttnProcessor2_0, XFormersAttnProcessor),
1336
1337
1338
1339
1340
1341
1342
1343
        )
        # if xformers or torch_2_0 is used attention block does not need
        # to be in float32 which can save lots of memory
        if use_torch_2_0_or_xformers:
            self.vae.post_quant_conv.to(dtype)
            self.vae.decoder.conv_in.to(dtype)
            self.vae.decoder.mid_block.to(dtype)

1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            timesteps (`torch.Tensor`):
                generate embedding vectors at these timesteps
            embedding_dim (`int`, *optional*, defaults to 512):
                dimension of the embeddings to generate
            dtype:
                data type of the generated embeddings

        Returns:
1358
            `torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

1373
1374
1375
1376
1377
1378
1379
1380
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

1381
1382
1383
1384
    @property
    def clip_skip(self):
        return self._clip_skip

1385
    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1386
    # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def denoising_end(self):
        return self._denoising_end

    @property
    def denoising_start(self):
        return self._denoising_start

    @property
    def num_timesteps(self):
        return self._num_timesteps

1408
1409
1410
1411
1412
1413
    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: str = None,
        prompt_2: Optional[str] = None,
1414
1415
        image: Optional[PipelineImageInput] = None,
        mask_image: Optional[PipelineImageInput] = None,
1416
        masked_image_latents: Optional[torch.Tensor] = None,
1417
1418
        height: Optional[int] = None,
        width: Optional[int] = None,
1419
        strength: float = 0.8,
1420
        num_inference_steps: int = 50,
1421
1422
        timesteps: List[int] = None,
        denoising_start: Optional[float] = None,
1423
1424
1425
1426
1427
1428
1429
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1430
        latents: Optional[torch.Tensor] = None,
1431
        ip_adapter_image: Optional[PipelineImageInput] = None,
1432
1433
1434
1435
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
1436
1437
1438
1439
1440
1441
1442
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
1443
1444
1445
1446
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str`):
                The prompt  to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str`):
                The prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
1458
1459
1460
1461
1462
1463
1464
1465
            image (`PipelineImageInput`, *optional*):
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process.
            mask_image (`PipelineImageInput`, *optional*):
                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
1466
1467
1468
1469
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
1470
1471
1472
1473
1474
1475
            strength (`float`, *optional*, defaults to 0.8):
                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
                noise will be maximum and the denoising process will run for the full number of iterations specified in
                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
1476
1477
1478
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            denoising_start (`float`, *optional*):
                When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
                bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
                it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
                strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
                is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
                Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
1490
1491
1492
            denoising_end (`float`, *optional*):
                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
                completed before it is intentionally prematurely terminated. As a result, the returned sample will
1493
1494
1495
1496
1497
                still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
                denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
                final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
                forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image
                Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
1498
            guidance_scale (`float`, *optional*, defaults to 5.0):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1499
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
1500
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1501
                Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str`):
                The prompt not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str`):
                The prompt not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1514
                Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
1515
1516
1517
1518
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
1519
            latents (`torch.Tensor`, *optional*):
1520
1521
1522
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
1523
1524
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
1525
            prompt_embeds (`torch.Tensor`, *optional*):
1526
1527
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
1528
            negative_prompt_embeds (`torch.Tensor`, *optional*):
1529
1530
1531
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
1532
            pooled_prompt_embeds (`torch.Tensor`, *optional*):
1533
1534
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
1535
            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
                of a plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1549
            guidance_rescale (`float`, *optional*, defaults to 0.0):
1550
                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1551
1552
                Flawed](https://huggingface.co/papers/2305.08891) `guidance_scale` is defined as `φ` in equation 16. of
                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891).
1553
1554
1555
                Guidance rescale factor should fix overexposure when using zero terminal SNR.
            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1556
                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1557
1558
1559
1560
1561
1562
1563
1564
1565
                explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                For most cases, `target_size` should be set to the desired height and width of the generated image. If
1566
                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1567
                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1579
                `._callback_tensor_inputs` attribute of your pipeline class.
1580
1581
1582
1583
1584
1585
1586
1587

        Examples:

        Returns:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is a list with the generated images.
        """
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
        # 0. Default height and width to unet
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
1618
            strength,
1619
1620
1621
1622
1623
1624
1625
            callback_steps,
            negative_prompt,
            negative_prompt_2,
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
1626
            callback_on_step_end_tensor_inputs,
1627
1628
        )

1629
1630
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
1631
        self._clip_skip = clip_skip
1632
1633
1634
1635
        self._cross_attention_kwargs = cross_attention_kwargs
        self._denoising_end = denoising_end
        self._denoising_start = denoising_start

1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

1646
1647
1648
1649
1650
1651
1652
        if ip_adapter_image is not None:
            output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
            image_embeds, negative_image_embeds = self.encode_image(
                ip_adapter_image, device, num_images_per_prompt, output_hidden_state
            )
            if self.do_classifier_free_guidance:
                image_embeds = torch.cat([negative_image_embeds, image_embeds])
1653
1654

        # 3. Encode input prompt
1655
1656
1657
        lora_scale = (
            self._cross_attention_kwargs.get("scale", None) if self._cross_attention_kwargs is not None else None
        )
1658
1659
1660

        negative_prompt = negative_prompt if negative_prompt is not None else ""

1661
1662
1663
1664
1665
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
1666
        ) = get_weighted_text_embeddings_sdxl(
1667
1668
1669
1670
1671
            pipe=self,
            prompt=prompt,
            neg_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            clip_skip=clip_skip,
1672
            lora_scale=lora_scale,
1673
        )
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
        dtype = prompt_embeds.dtype

        if isinstance(image, Image.Image):
            image = self.image_processor.preprocess(image, height=height, width=width)
        if image is not None:
            image = image.to(device=self.device, dtype=dtype)

        if isinstance(mask_image, Image.Image):
            mask = self.mask_processor.preprocess(mask_image, height=height, width=width)
        else:
            mask = mask_image
        if mask_image is not None:
            mask = mask.to(device=self.device, dtype=dtype)

            if masked_image_latents is not None:
                masked_image = masked_image_latents
            elif image.shape[1] == 4:
                # if image is in latent space, we can't mask it
                masked_image = None
            else:
                masked_image = image * (mask < 0.5)
        else:
            mask = None
1697
1698

        # 4. Prepare timesteps
1699
        def denoising_value_valid(dnv):
1700
            return isinstance(dnv, float) and 0 < dnv < 1
1701
1702
1703
1704
1705
1706
1707

        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        if image is not None:
            timesteps, num_inference_steps = self.get_timesteps(
                num_inference_steps,
                strength,
                device,
1708
                denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
1709
1710
1711
1712
1713
1714
1715
1716
            )

            # check that number of inference steps is not < 1 - as this doesn't make sense
            if num_inference_steps < 1:
                raise ValueError(
                    f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
                    f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
                )
1717

1718
1719
1720
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        is_strength_max = strength == 1.0
        add_noise = True if self.denoising_start is None else False
1721
1722

        # 5. Prepare latent variables
1723
1724
1725
1726
        num_channels_latents = self.vae.config.latent_channels
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4

1727
        latents = self.prepare_latents(
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
            image=image,
            mask=mask,
            width=width,
            height=height,
            num_channels_latents=num_channels_unet,
            timestep=latent_timestep,
            batch_size=batch_size,
            num_images_per_prompt=num_images_per_prompt,
            dtype=prompt_embeds.dtype,
            device=device,
            generator=generator,
            add_noise=add_noise,
            latents=latents,
            is_strength_max=is_strength_max,
            return_noise=True,
            return_image_latents=return_image_latents,
1744
1745
        )

1746
1747
1748
1749
1750
1751
        if mask is not None:
            if return_image_latents:
                latents, noise, image_latents = latents
            else:
                latents, noise = latents

1752
        # 5.1 Prepare mask latent variables
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
        if mask is not None:
            mask, masked_image_latents = self.prepare_mask_latents(
                mask=mask,
                masked_image=masked_image,
                batch_size=batch_size * num_images_per_prompt,
                height=height,
                width=width,
                dtype=prompt_embeds.dtype,
                device=device,
                generator=generator,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
            )

1766
            # Check that sizes of mask, masked image and latents match
1767
1768
1769
1770
1771
1772
1773
1774
1775
            if num_channels_unet == 9:
                # default case for runwayml/stable-diffusion-inpainting
                num_channels_mask = mask.shape[1]
                num_channels_masked_image = masked_image_latents.shape[1]
                if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet:
                    raise ValueError(
                        f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
                        f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
                        f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
1776
                        f" = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of"
1777
1778
1779
1780
1781
1782
1783
                        " `pipeline.unet` or your `mask_image` or `image` input."
                    )
            elif num_channels_unet != 4:
                raise ValueError(
                    f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
                )

1784
1785
1786
        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

1787
1788
1789
        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else {}

1790
1791
1792
1793
1794
1795
1796
        height, width = latents.shape[-2:]
        height = height * self.vae_scale_factor
        width = width * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

1797
1798
1799
1800
1801
1802
        # 7. Prepare added time ids & embeddings
        add_text_embeds = pooled_prompt_embeds
        add_time_ids = self._get_add_time_ids(
            original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
        )

1803
        if self.do_classifier_free_guidance:
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)

        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)

        # 7.1 Apply denoising_end
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
        if (
            self.denoising_end is not None
            and self.denoising_start is not None
            and denoising_value_valid(self.denoising_end)
            and denoising_value_valid(self.denoising_start)
            and self.denoising_start >= self.denoising_end
        ):
            raise ValueError(
                f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
                + f" {self.denoising_end} when using type float."
            )
        elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
1827
1828
1829
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
1830
                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1831
1832
1833
1834
1835
                )
            )
            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
            timesteps = timesteps[:num_inference_steps]

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
        # 8. Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        self._num_timesteps = len(timesteps)

        # 9. Denoising loop
1847
1848
1849
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
1850
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1851
1852
1853

                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

1854
1855
1856
                if mask is not None and num_channels_unet == 9:
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)

1857
                # predict the noise residual
1858
                added_cond_kwargs.update({"text_embeds": add_text_embeds, "time_ids": add_time_ids})
1859
1860
1861
1862
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
1863
1864
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
1865
1866
1867
1868
1869
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
1870
                if self.do_classifier_free_guidance:
1871
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1872
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1873

1874
                if self.do_classifier_free_guidance and guidance_rescale > 0.0:
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1875
                    # Based on 3.4. in https://huggingface.co/papers/2305.08891
1876
1877
1878
1879
1880
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
                if mask is not None and num_channels_unet == 4:
                    init_latents_proper = image_latents

                    if self.do_classifier_free_guidance:
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask

                    if i < len(timesteps) - 1:
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_proper, noise, torch.tensor([noise_timestep])
                        )

                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents

1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
                    negative_pooled_prompt_embeds = callback_outputs.pop(
                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                    )
                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)

1912
1913
1914
1915
                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
1916
1917
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
1918
1919

        if not output_type == "latent":
1920
1921
1922
1923
1924
1925
1926
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast

            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)

1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
            # unscale/denormalize the latents
            # denormalize with the mean and std if available and not None
            has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
            has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
            if has_latents_mean and has_latents_std:
                latents_mean = (
                    torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
                )
                latents_std = (
                    torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
                )
                latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
            else:
                latents = latents / self.vae.config.scaling_factor

            image = self.vae.decode(latents, return_dict=False)[0]
1943
1944
1945
1946

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
        else:
            image = latents
            return StableDiffusionXLPipelineOutput(images=image)

        # apply watermark if available
        if self.watermark is not None:
            image = self.watermark.apply_watermark(image)

        image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image,)

        return StableDiffusionXLPipelineOutput(images=image)

1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
    def text2img(
        self,
        prompt: str = None,
        prompt_2: Optional[str] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        denoising_start: Optional[float] = None,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1982
        latents: Optional[torch.Tensor] = None,
1983
        ip_adapter_image: Optional[PipelineImageInput] = None,
1984
1985
1986
1987
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
1988
1989
1990
1991
1992
1993
1994
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
1995
1996
1997
1998
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
1999
    ):
2000
2001
2002
2003
2004
        r"""
        Function invoked when calling pipeline for text-to-image.

        Refer to the documentation of the `__call__` method for parameter descriptions.
        """
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
        return self.__call__(
            prompt=prompt,
            prompt_2=prompt_2,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
            denoising_start=denoising_start,
            denoising_end=denoising_end,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
2021
            ip_adapter_image=ip_adapter_image,
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            output_type=output_type,
            return_dict=return_dict,
            cross_attention_kwargs=cross_attention_kwargs,
            guidance_rescale=guidance_rescale,
            original_size=original_size,
            crops_coords_top_left=crops_coords_top_left,
            target_size=target_size,
2033
2034
2035
2036
            clip_skip=clip_skip,
            callback_on_step_end=callback_on_step_end,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            **kwargs,
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
        )

    def img2img(
        self,
        prompt: str = None,
        prompt_2: Optional[str] = None,
        image: Optional[PipelineImageInput] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        strength: float = 0.8,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        denoising_start: Optional[float] = None,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
2057
        latents: Optional[torch.Tensor] = None,
2058
        ip_adapter_image: Optional[PipelineImageInput] = None,
2059
2060
2061
2062
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
2063
2064
2065
2066
2067
2068
2069
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
2070
2071
2072
2073
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
2074
    ):
2075
2076
2077
2078
2079
        r"""
        Function invoked when calling pipeline for image-to-image.

        Refer to the documentation of the `__call__` method for parameter descriptions.
        """
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
        return self.__call__(
            prompt=prompt,
            prompt_2=prompt_2,
            image=image,
            height=height,
            width=width,
            strength=strength,
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
            denoising_start=denoising_start,
            denoising_end=denoising_end,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
2098
            ip_adapter_image=ip_adapter_image,
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            output_type=output_type,
            return_dict=return_dict,
            cross_attention_kwargs=cross_attention_kwargs,
            guidance_rescale=guidance_rescale,
            original_size=original_size,
            crops_coords_top_left=crops_coords_top_left,
            target_size=target_size,
2110
2111
2112
2113
            clip_skip=clip_skip,
            callback_on_step_end=callback_on_step_end,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            **kwargs,
2114
2115
2116
2117
2118
2119
2120
2121
        )

    def inpaint(
        self,
        prompt: str = None,
        prompt_2: Optional[str] = None,
        image: Optional[PipelineImageInput] = None,
        mask_image: Optional[PipelineImageInput] = None,
2122
        masked_image_latents: Optional[torch.Tensor] = None,
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
        height: Optional[int] = None,
        width: Optional[int] = None,
        strength: float = 0.8,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        denoising_start: Optional[float] = None,
        denoising_end: Optional[float] = None,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
2136
        latents: Optional[torch.Tensor] = None,
2137
        ip_adapter_image: Optional[PipelineImageInput] = None,
2138
2139
2140
2141
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
2142
2143
2144
2145
2146
2147
2148
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
2149
2150
2151
2152
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
2153
    ):
2154
2155
2156
2157
2158
        r"""
        Function invoked when calling pipeline for inpainting.

        Refer to the documentation of the `__call__` method for parameter descriptions.
        """
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
        return self.__call__(
            prompt=prompt,
            prompt_2=prompt_2,
            image=image,
            mask_image=mask_image,
            masked_image_latents=masked_image_latents,
            height=height,
            width=width,
            strength=strength,
            num_inference_steps=num_inference_steps,
            timesteps=timesteps,
            denoising_start=denoising_start,
            denoising_end=denoising_end,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
2179
            ip_adapter_image=ip_adapter_image,
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            output_type=output_type,
            return_dict=return_dict,
            cross_attention_kwargs=cross_attention_kwargs,
            guidance_rescale=guidance_rescale,
            original_size=original_size,
            crops_coords_top_left=crops_coords_top_left,
            target_size=target_size,
2191
2192
2193
2194
            clip_skip=clip_skip,
            callback_on_step_end=callback_on_step_end,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
            **kwargs,
2195
2196
        )

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2197
    # Override to properly handle the loading and unloading of the additional text encoder.
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
    def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        # We could have accessed the unet config from `lora_state_dict()` too. We pass
        # it here explicitly to be able to tell that it's coming from an SDXL
        # pipeline.
        state_dict, network_alphas = self.lora_state_dict(
            pretrained_model_name_or_path_or_dict,
            unet_config=self.unet.config,
            **kwargs,
        )
        self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)

        text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
        if len(text_encoder_state_dict) > 0:
            self.load_lora_into_text_encoder(
                text_encoder_state_dict,
                network_alphas=network_alphas,
                text_encoder=self.text_encoder,
                prefix="text_encoder",
                lora_scale=self.lora_scale,
            )

        text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
        if len(text_encoder_2_state_dict) > 0:
            self.load_lora_into_text_encoder(
                text_encoder_2_state_dict,
                network_alphas=network_alphas,
                text_encoder=self.text_encoder_2,
                prefix="text_encoder_2",
                lora_scale=self.lora_scale,
            )

    @classmethod
    def save_lora_weights(
2231
        cls,
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
        save_directory: Union[str, os.PathLike],
        unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = False,
    ):
        state_dict = {}

        def pack_weights(layers, prefix):
            layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
            layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
            return layers_state_dict

        state_dict.update(pack_weights(unet_lora_layers, "unet"))

        if text_encoder_lora_layers and text_encoder_2_lora_layers:
            state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
            state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))

2254
        cls.write_lora_layers(
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
            state_dict=state_dict,
            save_directory=save_directory,
            is_main_process=is_main_process,
            weight_name=weight_name,
            save_function=save_function,
            safe_serialization=safe_serialization,
        )

    def _remove_text_encoder_monkey_patch(self):
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
        self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)