scheduling_sasolver.py 56.7 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Shuchen Xue, etc. in University of Chinese Academy of Sciences Team and The HuggingFace Team. All rights reserved.
Junsong Chen's avatar
Junsong Chen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Quentin Gallouédec's avatar
Quentin Gallouédec committed
15
# DISCLAIMER: check https://huggingface.co/papers/2309.05019
Junsong Chen's avatar
Junsong Chen committed
16
17
18
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

import math
19
from typing import Callable, List, Literal, Optional, Tuple, Union
Junsong Chen's avatar
Junsong Chen committed
20
21
22
23
24

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate, is_scipy_available
Junsong Chen's avatar
Junsong Chen committed
26
27
28
29
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


30
31
32
33
if is_scipy_available():
    import scipy.stats


Junsong Chen's avatar
Junsong Chen committed
34
35
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
36
37
38
39
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
40
41
42
43
44
45
46
47
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
48
49
50
51
52
53
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
Junsong Chen's avatar
Junsong Chen committed
54
55

    Returns:
56
57
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
Junsong Chen's avatar
Junsong Chen committed
58
59
60
61
62
63
64
65
66
67
68
69
    """
    if alpha_transform_type == "cosine":

        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
70
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
Junsong Chen's avatar
Junsong Chen committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


class SASolverScheduler(SchedulerMixin, ConfigMixin):
    """
    `SASolverScheduler` is a fast dedicated high-order solver for diffusion SDEs.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        predictor_order (`int`, defaults to 2):
100
101
            The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for
            guided sampling, and `predictor_order=3` for unconditional sampling.
Junsong Chen's avatar
Junsong Chen committed
102
        corrector_order (`int`, defaults to 2):
103
104
            The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for
            guided sampling, and `corrector_order=3` for unconditional sampling.
Junsong Chen's avatar
Junsong Chen committed
105
106
107
108
109
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        tau_func (`Callable`, *optional*):
110
111
112
            Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`.
            SA-Solver will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample
            from vanilla diffusion SDE if tau_func is set to `lambda t: 1`. For more details, please check
Quentin Gallouédec's avatar
Quentin Gallouédec committed
113
            https://huggingface.co/papers/2309.05019
Junsong Chen's avatar
Junsong Chen committed
114
115
116
117
118
119
120
121
122
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `data_prediction`):
123
124
            Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use
            `data_prediction` with `solver_order=2` for guided sampling like in Stable Diffusion.
Junsong Chen's avatar
Junsong Chen committed
125
126
127
128
129
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Default = True.
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
130
131
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
132
133
134
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
Junsong Chen's avatar
Junsong Chen committed
135
136
137
138
139
140
141
142
143
144
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
        variance_type (`str`, *optional*):
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
145
            An offset added to the inference steps, as required by some model families.
Junsong Chen's avatar
Junsong Chen committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        predictor_order: int = 2,
        corrector_order: int = 2,
        prediction_type: str = "epsilon",
        tau_func: Optional[Callable] = None,
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "data_prediction",
        lower_order_final: bool = True,
        use_karras_sigmas: Optional[bool] = False,
169
        use_exponential_sigmas: Optional[bool] = False,
170
        use_beta_sigmas: Optional[bool] = False,
171
172
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
Junsong Chen's avatar
Junsong Chen committed
173
174
175
176
177
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
    ):
178
179
180
181
182
183
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
Junsong Chen's avatar
Junsong Chen committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(
                    beta_start**0.5,
                    beta_end**0.5,
                    num_train_timesteps,
                    dtype=torch.float32,
                )
                ** 2
            )
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
203
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
Junsong Chen's avatar
Junsong Chen committed
204
205
206
207
208
209
210
211
212
213
214
215
216

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        if algorithm_type not in ["data_prediction", "noise_prediction"]:
217
            raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
Junsong Chen's avatar
Junsong Chen committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.timestep_list = [None] * max(predictor_order, corrector_order - 1)
        self.model_outputs = [None] * max(predictor_order, corrector_order - 1)

        if tau_func is None:
            self.tau_func = lambda t: 1 if t >= 200 and t <= 800 else 0
        else:
            self.tau_func = tau_func
        self.predict_x0 = algorithm_type == "data_prediction"
        self.lower_order_nums = 0
        self.last_sample = None
        self._step_index = None
234
        self._begin_index = None
235
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
Junsong Chen's avatar
Junsong Chen committed
236
237
238
239

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
240
        The index counter for current timestep. It will increase 1 after each scheduler step.
Junsong Chen's avatar
Junsong Chen committed
241
242
243
        """
        return self._step_index

244
245
246
247
248
249
250
251
252
253
254
255
256
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
257
            begin_index (`int`, defaults to `0`):
258
259
260
261
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

Junsong Chen's avatar
Junsong Chen committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        # Clipping the minimum of all lambda(t) for numerical stability.
        # This is critical for cosine (squaredcos_cap_v2) noise schedule.
        clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
        last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()

Quentin Gallouédec's avatar
Quentin Gallouédec committed
277
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
Junsong Chen's avatar
Junsong Chen committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64)
            )

        elif self.config.timestep_spacing == "leading":
            step_ratio = last_timestep // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
301
        log_sigmas = np.log(sigmas)
Junsong Chen's avatar
Junsong Chen committed
302
303
304
305
306
        if self.config.use_karras_sigmas:
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
307
        elif self.config.use_exponential_sigmas:
308
309
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
310
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
311
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
312
        elif self.config.use_beta_sigmas:
313
314
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
315
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
316
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
317
318
319
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
320
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
321
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
322
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
Junsong Chen's avatar
Junsong Chen committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)

        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)

        self.num_inference_steps = len(timesteps)
        self.model_outputs = [
            None,
        ] * max(self.config.predictor_order, self.config.corrector_order - 1)
        self.lower_order_nums = 0
        self.last_sample = None

        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
340
        self._begin_index = None
341
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
Junsong Chen's avatar
Junsong Chen committed
342
343

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
344
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
345
        """
346
347
        Apply dynamic thresholding to the predicted sample.

Junsong Chen's avatar
Junsong Chen committed
348
349
350
351
352
353
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
354
        https://huggingface.co/papers/2205.11487
355
356
357
358
359
360
361
362

        Args:
            sample (`torch.Tensor`):
                The predicted sample to be thresholded.

        Returns:
            `torch.Tensor`:
                The thresholded sample.
Junsong Chen's avatar
Junsong Chen committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        """
        dtype = sample.dtype
        batch_size, channels, *remaining_dims = sample.shape

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

        sample = sample.reshape(batch_size, channels, *remaining_dims)
        sample = sample.to(dtype)

        return sample

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
389
390
391
392
393
394
395
396
397
398
399
400
401
        """
        Convert sigma values to corresponding timestep values through interpolation.

        Args:
            sigma (`np.ndarray`):
                The sigma value(s) to convert to timestep(s).
            log_sigmas (`np.ndarray`):
                The logarithm of the sigma schedule used for interpolation.

        Returns:
            `np.ndarray`:
                The interpolated timestep value(s) corresponding to the input sigma(s).
        """
Junsong Chen's avatar
Junsong Chen committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        # get log sigma
        log_sigma = np.log(np.maximum(sigma, 1e-10))

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
426
427
428
429
430
431
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
Junsong Chen's avatar
Junsong Chen committed
432
433
434
435

        return alpha_t, sigma_t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
436
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        """
        Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
        Models](https://huggingface.co/papers/2206.00364).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following the Karras noise schedule.
        """
Junsong Chen's avatar
Junsong Chen committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

474
475
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
476
477
478
479
480
481
482
483
484
485
486
487
488
        """
        Construct an exponential noise schedule.

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following an exponential schedule.
        """
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

505
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
506
507
        return sigmas

508
509
510
511
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        """
        Construct a beta noise schedule as proposed in [Beta Sampling is All You
        Need](https://huggingface.co/papers/2407.12173).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.
            alpha (`float`, *optional*, defaults to `0.6`):
                The alpha parameter for the beta distribution.
            beta (`float`, *optional*, defaults to `0.6`):
                The beta parameter for the beta distribution.

        Returns:
            `torch.Tensor`:
                The converted sigma values following a beta distribution schedule.
        """
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

546
        sigmas = np.array(
547
548
549
550
551
552
553
554
555
556
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

Junsong Chen's avatar
Junsong Chen committed
557
558
    def convert_model_output(
        self,
559
        model_output: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
560
        *args,
561
        sample: torch.Tensor = None,
Junsong Chen's avatar
Junsong Chen committed
562
        **kwargs,
563
    ) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
564
        """
565
566
567
        Convert the model output to the corresponding type the data_prediction/noise_prediction algorithm needs.
        Noise_prediction is designed to discretize an integral of the noise prediction model, and data_prediction is
        designed to discretize an integral of the data prediction model.
Junsong Chen's avatar
Junsong Chen committed
568

Steven Liu's avatar
Steven Liu committed
569
570
        > [!TIP] > The algorithm and model type are decoupled. You can use either data_prediction or noise_prediction
        for both > noise prediction and data prediction models.
Junsong Chen's avatar
Junsong Chen committed
571
572

        Args:
573
            model_output (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
574
                The direct output from the learned diffusion model.
575
            sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
576
577
578
                A current instance of a sample created by the diffusion process.

        Returns:
579
            `torch.Tensor`:
Junsong Chen's avatar
Junsong Chen committed
580
581
582
583
584
585
586
                The converted model output.
        """
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
587
                raise ValueError("missing `sample` as a required keyword argument")
Junsong Chen's avatar
Junsong Chen committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        # SA-Solver_data_prediction needs to solve an integral of the data prediction model.
        if self.config.algorithm_type in ["data_prediction"]:
            if self.config.prediction_type == "epsilon":
                # SA-Solver only needs the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    model_output = model_output[:, :3]
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
                x0_pred = alpha_t * sample - sigma_t * model_output
608
609
610
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
Junsong Chen's avatar
Junsong Chen committed
611
612
            else:
                raise ValueError(
613
614
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the SASolverScheduler."
Junsong Chen's avatar
Junsong Chen committed
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
                )

            if self.config.thresholding:
                x0_pred = self._threshold_sample(x0_pred)

            return x0_pred

        # SA-Solver_noise_prediction needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type in ["noise_prediction"]:
            if self.config.prediction_type == "epsilon":
                # SA-Solver only needs the "mean" output.
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
            elif self.config.prediction_type == "sample":
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the SASolverScheduler."
                )

            if self.config.thresholding:
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

    def get_coefficients_exponential_negative(self, order, interval_start, interval_end):
        """
        Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end
        """
        assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"

        if order == 0:
            return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1)
        elif order == 1:
            return torch.exp(-interval_end) * (
                (interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1)
            )
        elif order == 2:
            return torch.exp(-interval_end) * (
                (interval_start**2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start)
                - (interval_end**2 + 2 * interval_end + 2)
            )
        elif order == 3:
            return torch.exp(-interval_end) * (
                (interval_start**3 + 3 * interval_start**2 + 6 * interval_start + 6)
                * torch.exp(interval_end - interval_start)
                - (interval_end**3 + 3 * interval_end**2 + 6 * interval_end + 6)
            )

    def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau):
        """
        Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end
        """
        assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"

        # after change of variable(cov)
        interval_end_cov = (1 + tau**2) * interval_end
        interval_start_cov = (1 + tau**2) * interval_start

        if order == 0:
            return (
                torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau**2)
            )
        elif order == 1:
            return (
                torch.exp(interval_end_cov)
                * (
                    (interval_end_cov - 1)
                    - (interval_start_cov - 1) * torch.exp(-(interval_end_cov - interval_start_cov))
                )
                / ((1 + tau**2) ** 2)
            )
        elif order == 2:
            return (
                torch.exp(interval_end_cov)
                * (
                    (interval_end_cov**2 - 2 * interval_end_cov + 2)
                    - (interval_start_cov**2 - 2 * interval_start_cov + 2)
                    * torch.exp(-(interval_end_cov - interval_start_cov))
                )
                / ((1 + tau**2) ** 3)
            )
        elif order == 3:
            return (
                torch.exp(interval_end_cov)
                * (
                    (interval_end_cov**3 - 3 * interval_end_cov**2 + 6 * interval_end_cov - 6)
                    - (interval_start_cov**3 - 3 * interval_start_cov**2 + 6 * interval_start_cov - 6)
                    * torch.exp(-(interval_end_cov - interval_start_cov))
                )
                / ((1 + tau**2) ** 4)
            )

    def lagrange_polynomial_coefficient(self, order, lambda_list):
        """
        Calculate the coefficient of lagrange polynomial
        """

        assert order in [0, 1, 2, 3]
        assert order == len(lambda_list) - 1
        if order == 0:
            return [[1]]
        elif order == 1:
            return [
                [
                    1 / (lambda_list[0] - lambda_list[1]),
                    -lambda_list[1] / (lambda_list[0] - lambda_list[1]),
                ],
                [
                    1 / (lambda_list[1] - lambda_list[0]),
                    -lambda_list[0] / (lambda_list[1] - lambda_list[0]),
                ],
            ]
        elif order == 2:
            denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2])
            denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2])
            denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1])
            return [
                [
                    1 / denominator1,
                    (-lambda_list[1] - lambda_list[2]) / denominator1,
                    lambda_list[1] * lambda_list[2] / denominator1,
                ],
                [
                    1 / denominator2,
                    (-lambda_list[0] - lambda_list[2]) / denominator2,
                    lambda_list[0] * lambda_list[2] / denominator2,
                ],
                [
                    1 / denominator3,
                    (-lambda_list[0] - lambda_list[1]) / denominator3,
                    lambda_list[0] * lambda_list[1] / denominator3,
                ],
            ]
        elif order == 3:
            denominator1 = (
                (lambda_list[0] - lambda_list[1])
                * (lambda_list[0] - lambda_list[2])
                * (lambda_list[0] - lambda_list[3])
            )
            denominator2 = (
                (lambda_list[1] - lambda_list[0])
                * (lambda_list[1] - lambda_list[2])
                * (lambda_list[1] - lambda_list[3])
            )
            denominator3 = (
                (lambda_list[2] - lambda_list[0])
                * (lambda_list[2] - lambda_list[1])
                * (lambda_list[2] - lambda_list[3])
            )
            denominator4 = (
                (lambda_list[3] - lambda_list[0])
                * (lambda_list[3] - lambda_list[1])
                * (lambda_list[3] - lambda_list[2])
            )
            return [
                [
                    1 / denominator1,
                    (-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1,
                    (
                        lambda_list[1] * lambda_list[2]
                        + lambda_list[1] * lambda_list[3]
                        + lambda_list[2] * lambda_list[3]
                    )
                    / denominator1,
                    (-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1,
                ],
                [
                    1 / denominator2,
                    (-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2,
                    (
                        lambda_list[0] * lambda_list[2]
                        + lambda_list[0] * lambda_list[3]
                        + lambda_list[2] * lambda_list[3]
                    )
                    / denominator2,
                    (-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2,
                ],
                [
                    1 / denominator3,
                    (-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3,
                    (
                        lambda_list[0] * lambda_list[1]
                        + lambda_list[0] * lambda_list[3]
                        + lambda_list[1] * lambda_list[3]
                    )
                    / denominator3,
                    (-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3,
                ],
                [
                    1 / denominator4,
                    (-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4,
                    (
                        lambda_list[0] * lambda_list[1]
                        + lambda_list[0] * lambda_list[2]
                        + lambda_list[1] * lambda_list[2]
                    )
                    / denominator4,
                    (-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4,
                ],
            ]

    def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau):
        assert order in [1, 2, 3, 4]
        assert order == len(lambda_list), "the length of lambda list must be equal to the order"
        coefficients = []
        lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list)
        for i in range(order):
            coefficient = 0
            for j in range(order):
                if self.predict_x0:
                    coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive(
                        order - 1 - j, interval_start, interval_end, tau
                    )
                else:
                    coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative(
                        order - 1 - j, interval_start, interval_end
                    )
            coefficients.append(coefficient)
        assert len(coefficients) == order, "the length of coefficients does not match the order"
        return coefficients

    def stochastic_adams_bashforth_update(
        self,
847
        model_output: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
848
        *args,
849
850
        sample: torch.Tensor,
        noise: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
851
        order: int,
852
        tau: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
853
        **kwargs,
854
    ) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
855
856
857
858
        """
        One step for the SA-Predictor.

        Args:
859
            model_output (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
860
861
862
                The direct output from the learned diffusion model at the current timestep.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
863
            sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
864
865
866
867
868
                A current instance of a sample created by the diffusion process.
            order (`int`):
                The order of SA-Predictor at this timestep.

        Returns:
869
            `torch.Tensor`:
Junsong Chen's avatar
Junsong Chen committed
870
871
872
873
874
875
876
                The sample tensor at the previous timestep.
        """
        prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
877
                raise ValueError("missing `sample` as a required keyword argument")
Junsong Chen's avatar
Junsong Chen committed
878
879
880
881
        if noise is None:
            if len(args) > 2:
                noise = args[2]
            else:
882
                raise ValueError("missing `noise` as a required keyword argument")
Junsong Chen's avatar
Junsong Chen committed
883
884
885
886
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
887
                raise ValueError("missing `order` as a required keyword argument")
Junsong Chen's avatar
Junsong Chen committed
888
889
890
891
        if tau is None:
            if len(args) > 4:
                tau = args[4]
            else:
892
                raise ValueError("missing `tau` as a required keyword argument")
Junsong Chen's avatar
Junsong Chen committed
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        model_output_list = self.model_outputs
        sigma_t, sigma_s0 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
        )
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)

        gradient_part = torch.zeros_like(sample)
        h = lambda_t - lambda_s0
        lambda_list = []

        for i in range(order):
            si = self.step_index - i
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
            lambda_list.append(lambda_si)

        gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)

        x = sample

        if self.predict_x0:
            if (
                order == 2
            ):  ## if order = 2 we do a modification that does not influence the convergence order similar to unipc. Note: This is used only for few steps sampling.
                # The added term is O(h^3). Empirically we find it will slightly improve the image quality.
                # ODE case
                # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
                # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
                temp_sigma = self.sigmas[self.step_index - 1]
                temp_alpha_s, temp_sigma_s = self._sigma_to_alpha_sigma_t(temp_sigma)
                temp_lambda_s = torch.log(temp_alpha_s) - torch.log(temp_sigma_s)
                gradient_coefficients[0] += (
                    1.0
                    * torch.exp((1 + tau**2) * lambda_t)
                    * (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2))
                    / (lambda_s0 - temp_lambda_s)
                )
                gradient_coefficients[1] -= (
                    1.0
                    * torch.exp((1 + tau**2) * lambda_t)
                    * (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2))
                    / (lambda_s0 - temp_lambda_s)
                )

        for i in range(order):
            if self.predict_x0:
                gradient_part += (
                    (1 + tau**2)
                    * sigma_t
                    * torch.exp(-(tau**2) * lambda_t)
                    * gradient_coefficients[i]
                    * model_output_list[-(i + 1)]
                )
            else:
                gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_output_list[-(i + 1)]

        if self.predict_x0:
            noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * noise
        else:
            noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise

        if self.predict_x0:
            x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
        else:
            x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part

        x_t = x_t.to(x.dtype)
        return x_t

    def stochastic_adams_moulton_update(
        self,
974
        this_model_output: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
975
        *args,
976
977
978
        last_sample: torch.Tensor,
        last_noise: torch.Tensor,
        this_sample: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
979
        order: int,
980
        tau: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
981
        **kwargs,
982
    ) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
983
984
985
986
        """
        One step for the SA-Corrector.

        Args:
987
            this_model_output (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
988
989
990
                The model outputs at `x_t`.
            this_timestep (`int`):
                The current timestep `t`.
991
            last_sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
992
                The generated sample before the last predictor `x_{t-1}`.
993
            this_sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
994
995
996
997
998
                The generated sample after the last predictor `x_{t}`.
            order (`int`):
                The order of SA-Corrector at this step.

        Returns:
999
            `torch.Tensor`:
Junsong Chen's avatar
Junsong Chen committed
1000
1001
1002
1003
1004
1005
1006
1007
                The corrected sample tensor at the current timestep.
        """

        this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
        if last_sample is None:
            if len(args) > 1:
                last_sample = args[1]
            else:
1008
                raise ValueError("missing `last_sample` as a required keyword argument")
Junsong Chen's avatar
Junsong Chen committed
1009
1010
1011
1012
        if last_noise is None:
            if len(args) > 2:
                last_noise = args[2]
            else:
1013
                raise ValueError("missing `last_noise` as a required keyword argument")
Junsong Chen's avatar
Junsong Chen committed
1014
1015
1016
1017
        if this_sample is None:
            if len(args) > 3:
                this_sample = args[3]
            else:
1018
                raise ValueError("missing `this_sample` as a required keyword argument")
Junsong Chen's avatar
Junsong Chen committed
1019
1020
1021
1022
        if order is None:
            if len(args) > 4:
                order = args[4]
            else:
1023
                raise ValueError("missing `order` as a required keyword argument")
Junsong Chen's avatar
Junsong Chen committed
1024
1025
1026
1027
        if tau is None:
            if len(args) > 5:
                tau = args[5]
            else:
1028
                raise ValueError("missing `tau` as a required keyword argument")
Junsong Chen's avatar
Junsong Chen committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
        if this_timestep is not None:
            deprecate(
                "this_timestep",
                "1.0.0",
                "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        model_output_list = self.model_outputs
        sigma_t, sigma_s0 = (
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        gradient_part = torch.zeros_like(this_sample)
        h = lambda_t - lambda_s0
        lambda_list = []
        for i in range(order):
            si = self.step_index - i
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
            lambda_list.append(lambda_si)

        model_prev_list = model_output_list + [this_model_output]

        gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)

        x = last_sample

        if self.predict_x0:
            if (
                order == 2
            ):  ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling.
                # The added term is O(h^3). Empirically we find it will slightly improve the image quality.
                # ODE case
                # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
                # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
                gradient_coefficients[0] += (
                    1.0
                    * torch.exp((1 + tau**2) * lambda_t)
                    * (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h))
                )
                gradient_coefficients[1] -= (
                    1.0
                    * torch.exp((1 + tau**2) * lambda_t)
                    * (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h))
                )

        for i in range(order):
            if self.predict_x0:
                gradient_part += (
                    (1 + tau**2)
                    * sigma_t
                    * torch.exp(-(tau**2) * lambda_t)
                    * gradient_coefficients[i]
                    * model_prev_list[-(i + 1)]
                )
            else:
                gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)]

        if self.predict_x0:
            noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * last_noise
        else:
            noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * last_noise

        if self.predict_x0:
            x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
        else:
            x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part

        x_t = x_t.to(x.dtype)
        return x_t

1105
1106
1107
1108
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
Junsong Chen's avatar
Junsong Chen committed
1109

1110
        index_candidates = (schedule_timesteps == timestep).nonzero()
Junsong Chen's avatar
Junsong Chen committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
Junsong Chen's avatar
Junsong Chen committed
1137
1138
1139

    def step(
        self,
1140
        model_output: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
1141
        timestep: int,
1142
        sample: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
1143
1144
1145
1146
1147
1148
1149
1150
        generator=None,
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the SA-Solver.

        Args:
1151
            model_output (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
1152
1153
1154
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
1155
            sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        use_corrector = self.step_index > 0 and self.last_sample is not None

        model_output_convert = self.convert_model_output(model_output, sample=sample)

        if use_corrector:
            current_tau = self.tau_func(self.timestep_list[-1])
            sample = self.stochastic_adams_moulton_update(
                this_model_output=model_output_convert,
                last_sample=self.last_sample,
                last_noise=self.last_noise,
                this_sample=sample,
                order=self.this_corrector_order,
                tau=current_tau,
            )

        for i in range(max(self.config.predictor_order, self.config.corrector_order - 1) - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
            self.timestep_list[i] = self.timestep_list[i + 1]

        self.model_outputs[-1] = model_output_convert
        self.timestep_list[-1] = timestep

        noise = randn_tensor(
            model_output.shape,
            generator=generator,
            device=model_output.device,
            dtype=model_output.dtype,
        )

        if self.config.lower_order_final:
            this_predictor_order = min(self.config.predictor_order, len(self.timesteps) - self.step_index)
            this_corrector_order = min(self.config.corrector_order, len(self.timesteps) - self.step_index + 1)
        else:
            this_predictor_order = self.config.predictor_order
            this_corrector_order = self.config.corrector_order

        self.this_predictor_order = min(this_predictor_order, self.lower_order_nums + 1)  # warmup for multistep
        self.this_corrector_order = min(this_corrector_order, self.lower_order_nums + 2)  # warmup for multistep
        assert self.this_predictor_order > 0
        assert self.this_corrector_order > 0

        self.last_sample = sample
        self.last_noise = noise

        current_tau = self.tau_func(self.timestep_list[-1])
        prev_sample = self.stochastic_adams_bashforth_update(
            model_output=model_output_convert,
            sample=sample,
            noise=noise,
            order=self.this_predictor_order,
            tau=current_tau,
        )

        if self.lower_order_nums < max(self.config.predictor_order, self.config.corrector_order - 1):
            self.lower_order_nums += 1

        # upon completion increase step index by one
        self._step_index += 1

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1240
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
Junsong Chen's avatar
Junsong Chen committed
1241
1242
1243
1244
1245
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1246
            sample (`torch.Tensor`):
Junsong Chen's avatar
Junsong Chen committed
1247
1248
1249
                The input sample.

        Returns:
1250
            `torch.Tensor`:
Junsong Chen's avatar
Junsong Chen committed
1251
1252
1253
1254
1255
1256
1257
                A scaled input sample.
        """
        return sample

    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
    def add_noise(
        self,
1258
1259
        original_samples: torch.Tensor,
        noise: torch.Tensor,
Junsong Chen's avatar
Junsong Chen committed
1260
        timesteps: torch.IntTensor,
1261
    ) -> torch.Tensor:
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
        """
        Add noise to the original samples according to the noise magnitude at each timestep (this is the forward
        diffusion process).

        Args:
            original_samples (`torch.Tensor`):
                The original samples to which noise will be added.
            noise (`torch.Tensor`):
                The noise to add to the samples.
            timesteps (`torch.IntTensor`):
                The timesteps indicating the noise level for each sample.

        Returns:
            `torch.Tensor`:
                The noisy samples.
        """
Junsong Chen's avatar
Junsong Chen committed
1278
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
1279
1280
1281
1282
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
Junsong Chen's avatar
Junsong Chen committed
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps