gaussian_ddpm.py 5.59 KB
Newer Older
Patrick von Platen's avatar
improve  
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
anton-l's avatar
anton-l committed
14
import math
Patrick von Platen's avatar
Patrick von Platen committed
15
16

import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
17
18
from torch import nn

Patrick von Platen's avatar
Patrick von Platen committed
19
from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
20
from .schedulers_utils import betas_for_alpha_bar, linear_beta_schedule
Patrick von Platen's avatar
improve  
Patrick von Platen committed
21
22
23
24
25


SAMPLING_CONFIG_NAME = "scheduler_config.json"


Patrick von Platen's avatar
Patrick von Platen committed
26
class GaussianDDPMScheduler(nn.Module, ConfigMixin):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
27
28
29
30
31
32
33
34
35
36

    config_name = SAMPLING_CONFIG_NAME

    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        variance_type="fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
37
        clip_predicted_image=True,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
38
39
40
41
42
43
44
45
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
            variance_type=variance_type,
Patrick von Platen's avatar
Patrick von Platen committed
46
            clip_predicted_image=clip_predicted_image,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
47
48
        )
        self.num_timesteps = int(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
49
        self.clip_image = clip_predicted_image
Patrick von Platen's avatar
Patrick von Platen committed
50
        self.variance_type = variance_type
Patrick von Platen's avatar
improve  
Patrick von Platen committed
51
52
53

        if beta_schedule == "linear":
            betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
anton-l's avatar
anton-l committed
54
55
56
57
58
59
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
            betas = betas_for_alpha_bar(
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
60
61
62
63
64
65
66
67
68
69
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)

        self.register_buffer("betas", betas.to(torch.float32))
        self.register_buffer("alphas", alphas.to(torch.float32))
        self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))

Patrick von Platen's avatar
Patrick von Platen committed
70
71
72
73
74
75
76
77
78
79
80
81
#        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
        # TODO(PVP) - check how much of these is actually necessary!
        # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
        # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
#        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
#        if variance_type == "fixed_small":
#            log_variance = torch.log(variance.clamp(min=1e-20))
#        elif variance_type == "fixed_large":
#            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
#
#
#        self.register_buffer("log_variance", log_variance.to(torch.float32))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
82
83
84
85
86
87
88
89
90
91
92
93

    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return torch.tensor(1.0)
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
94
95
96
97
98
99
100
    def get_variance(self, t):
        alpha_prod_t = self.get_alpha_prod(t)
        alpha_prod_t_prev = self.get_alpha_prod(t - 1)

        # For t > 0, compute predicted variance βt (see formala (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
        # and sample from it to get previous image
        # x_{t-1} ~ N(pred_prev_image, variance) == add variane to pred_image
Patrick von Platen's avatar
Patrick von Platen committed
101
102
103
104
105
106
107
        variance = ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.get_beta(t))

        # hacks - were probs added for training stability
        if self.variance_type == "fixed_small":
            variance = variance.clamp(min=1e-20)
        elif self.variance_type == "fixed_large":
            variance = self.get_beta(t)
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110

        return variance

Patrick von Platen's avatar
Patrick von Platen committed
111
    def compute_prev_image_step(self, residual, image, t, output_pred_x_0=False):
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        # 1. compute alphas, betas
        alpha_prod_t = self.get_alpha_prod(t)
        alpha_prod_t_prev = self.get_alpha_prod(t - 1)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # 2. compute predicted original image from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
        pred_original_image = (image - beta_prod_t.sqrt() * residual) / alpha_prod_t.sqrt()

        # 3. Clip "predicted x_0"
        if self.clip_predicted_image:
            pred_original_image = torch.clamp(pred_original_image, -1, 1)

        # 4. Compute coefficients for pred_original_image x_0 and current image x_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_original_image_coeff = (alpha_prod_t_prev.sqrt() * self.get_beta(t)) / beta_prod_t
        current_image_coeff = self.get_alpha(t).sqrt() * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous image µ_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_prev_image = pred_original_image_coeff * pred_original_image + current_image_coeff * image

        return pred_prev_image

Patrick von Platen's avatar
improve  
Patrick von Platen committed
137
138
139
140
141
142
    def sample_noise(self, shape, device, generator=None):
        # always sample on CPU to be deterministic
        return torch.randn(shape, generator=generator).to(device)

    def __len__(self):
        return self.num_timesteps