modeling_ddpm.py 2.13 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


Patrick von Platen's avatar
up  
Patrick von Platen committed
17
import torch
Patrick von Platen's avatar
Patrick von Platen committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import tqdm
from diffusers import DiffusionPipeline

Patrick von Platen's avatar
Patrick von Platen committed
22
23

class DDPM(DiffusionPipeline):
Patrick von Platen's avatar
Patrick von Platen committed
24
    def __init__(self, unet, noise_scheduler):
Patrick von Platen's avatar
up  
Patrick von Platen committed
25
26
27
        super().__init__()
        self.register_modules(unet=unet, noise_scheduler=noise_scheduler)

Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
    def __call__(self, batch_size=1, generator=None, torch_device=None):
        if torch_device is None:
            torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
up  
Patrick von Platen committed
31
32

        self.unet.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
33
34

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
35
36
37
38
39
        image = self.noise_scheduler.sample_noise(
            (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
            device=torch_device,
            generator=generator,
        )
Patrick von Platen's avatar
up  
Patrick von Platen committed
40

Patrick von Platen's avatar
Patrick von Platen committed
41
42
        num_prediction_steps = len(self.noise_scheduler)
        for t in tqdm.tqdm(reversed(range(num_prediction_steps)), total=num_prediction_steps):
Patrick von Platen's avatar
Patrick von Platen committed
43
            # 1. predict noise residual
Patrick von Platen's avatar
up  
Patrick von Platen committed
44
            with torch.no_grad():
Patrick von Platen's avatar
Patrick von Platen committed
45
                residual = self.unet(image, t)
Patrick von Platen's avatar
Patrick von Platen committed
46

Patrick von Platen's avatar
Patrick von Platen committed
47
            # 2. predict previous mean of image x_t-1
Patrick von Platen's avatar
Patrick von Platen committed
48
            pred_prev_image = self.noise_scheduler.compute_prev_image_step(residual, image, t)
Patrick von Platen's avatar
Patrick von Platen committed
49

Patrick von Platen's avatar
Patrick von Platen committed
50
51
            # 3. optionally sample variance
            variance = 0
Patrick von Platen's avatar
Patrick von Platen committed
52
53
            if t > 0:
                noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
54
                variance = self.noise_scheduler.get_variance(t).sqrt() * noise
Patrick von Platen's avatar
Patrick von Platen committed
55

Patrick von Platen's avatar
Patrick von Platen committed
56
57
            # 4. set current image to prev_image: x_t -> x_t-1
            image = pred_prev_image + variance
Patrick von Platen's avatar
Patrick von Platen committed
58
59

        return image