controlnet.py 32.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
from torch import nn
from torch.nn import functional as F

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
23
from .attention_processor import AttentionProcessor, AttnProcessor
24
25
26
27
28
29
30
31
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_2d_blocks import (
    CrossAttnDownBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
    get_down_block,
)
Henrik Forstén's avatar
Henrik Forstén committed
32
from .unet_2d_condition import UNet2DConditionModel
33
34
35
36
37
38
39


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class ControlNetOutput(BaseOutput):
Steven Liu's avatar
Steven Liu committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    """
    The output of [`ControlNetModel`].

    Args:
        down_block_res_samples (`tuple[torch.Tensor]`):
            A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
            be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
            used to condition the original UNet's downsampling activations.
        mid_down_block_re_sample (`torch.Tensor`):
            The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
            `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
            Output can be used to condition the original UNet's middle block activation.
    """

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    down_block_res_samples: Tuple[torch.Tensor]
    mid_block_res_sample: torch.Tensor


class ControlNetConditioningEmbedding(nn.Module):
    """
    Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
    [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
    training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
    convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
    (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
    model) to encode image-space conditions ... into feature maps ..."
    """

    def __init__(
        self,
        conditioning_embedding_channels: int,
        conditioning_channels: int = 3,
        block_out_channels: Tuple[int] = (16, 32, 96, 256),
    ):
        super().__init__()

        self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)

        self.blocks = nn.ModuleList([])

        for i in range(len(block_out_channels) - 1):
            channel_in = block_out_channels[i]
            channel_out = block_out_channels[i + 1]
            self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
            self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))

        self.conv_out = zero_module(
            nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
        )

    def forward(self, conditioning):
        embedding = self.conv_in(conditioning)
        embedding = F.silu(embedding)

        for block in self.blocks:
            embedding = block(embedding)
            embedding = F.silu(embedding)

        embedding = self.conv_out(embedding)

        return embedding


class ControlNetModel(ModelMixin, ConfigMixin):
Steven Liu's avatar
Steven Liu committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    """
    A ControlNet model.

    Args:
        in_channels (`int`, defaults to 4):
            The number of channels in the input sample.
        flip_sin_to_cos (`bool`, defaults to `True`):
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, defaults to 0):
            The frequency shift to apply to the time embedding.
        down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
        only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
        block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, defaults to 2):
            The number of layers per block.
        downsample_padding (`int`, defaults to 1):
            The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, defaults to 1):
            The scale factor to use for the mid block.
        act_fn (`str`, defaults to "silu"):
            The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups to use for the normalization. If None, normalization and activation layers is skipped
            in post-processing.
        norm_eps (`float`, defaults to 1e-5):
            The epsilon to use for the normalization.
        cross_attention_dim (`int`, defaults to 1280):
            The dimension of the cross attention features.
        attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
            The dimension of the attention heads.
        use_linear_projection (`bool`, defaults to `False`):
        class_embed_type (`str`, *optional*, defaults to `None`):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
        num_class_embeds (`int`, *optional*, defaults to 0):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
        upcast_attention (`bool`, defaults to `False`):
        resnet_time_scale_shift (`str`, defaults to `"default"`):
            Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
        projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
            The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
            `class_embed_type="projection"`.
        controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
            The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
        conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
            The tuple of output channel for each block in the `conditioning_embedding` layer.
        global_pool_conditions (`bool`, defaults to `False`):
    """

156
157
158
159
160
161
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 4,
162
        conditioning_channels: int = 3,
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
        only_cross_attention: Union[bool, Tuple[bool]] = False,
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: Optional[int] = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
        attention_head_dim: Union[int, Tuple[int]] = 8,
181
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
182
183
184
185
186
187
188
189
        use_linear_projection: bool = False,
        class_embed_type: Optional[str] = None,
        num_class_embeds: Optional[int] = None,
        upcast_attention: bool = False,
        resnet_time_scale_shift: str = "default",
        projection_class_embeddings_input_dim: Optional[int] = None,
        controlnet_conditioning_channel_order: str = "rgb",
        conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
190
        global_pool_conditions: bool = False,
191
192
193
    ):
        super().__init__()

194
195
196
197
198
199
200
201
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

202
203
204
205
206
207
208
209
210
211
212
        # Check inputs
        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

213
        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
214
            raise ValueError(
215
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
            )

        # input
        conv_in_kernel = 3
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )

        # time
        time_embed_dim = block_out_channels[0] * 4

        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
        )

        # class embedding
        if class_embed_type is None and num_class_embeds is not None:
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
        else:
            self.class_embedding = None

        # control net conditioning embedding
        self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
            conditioning_embedding_channels=block_out_channels[0],
            block_out_channels=conditioning_embedding_out_channels,
264
            conditioning_channels=conditioning_channels,
265
266
267
268
269
270
271
272
273
274
275
        )

        self.down_blocks = nn.ModuleList([])
        self.controlnet_down_blocks = nn.ModuleList([])

        if isinstance(only_cross_attention, bool):
            only_cross_attention = [only_cross_attention] * len(down_block_types)

        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

276
277
278
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        # down
        output_channel = block_out_channels[0]

        controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
        controlnet_block = zero_module(controlnet_block)
        self.controlnet_down_blocks.append(controlnet_block)

        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
302
303
                num_attention_heads=num_attention_heads[i],
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
                downsample_padding=downsample_padding,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
            )
            self.down_blocks.append(down_block)

            for _ in range(layers_per_block):
                controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
                controlnet_block = zero_module(controlnet_block)
                self.controlnet_down_blocks.append(controlnet_block)

            if not is_final_block:
                controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
                controlnet_block = zero_module(controlnet_block)
                self.controlnet_down_blocks.append(controlnet_block)

        # mid
        mid_block_channel = block_out_channels[-1]

        controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
        controlnet_block = zero_module(controlnet_block)
        self.controlnet_mid_block = controlnet_block

        self.mid_block = UNetMidBlock2DCrossAttn(
            in_channels=mid_block_channel,
            temb_channels=time_embed_dim,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            resnet_time_scale_shift=resnet_time_scale_shift,
            cross_attention_dim=cross_attention_dim,
337
            num_attention_heads=num_attention_heads[-1],
338
339
340
341
342
            resnet_groups=norm_num_groups,
            use_linear_projection=use_linear_projection,
            upcast_attention=upcast_attention,
        )

Henrik Forstén's avatar
Henrik Forstén committed
343
344
345
346
347
348
349
350
351
    @classmethod
    def from_unet(
        cls,
        unet: UNet2DConditionModel,
        controlnet_conditioning_channel_order: str = "rgb",
        conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
        load_weights_from_unet: bool = True,
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
352
        Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
Henrik Forstén's avatar
Henrik Forstén committed
353
354
355

        Parameters:
            unet (`UNet2DConditionModel`):
Steven Liu's avatar
Steven Liu committed
356
357
                The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
                where applicable.
Henrik Forstén's avatar
Henrik Forstén committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        """
        controlnet = cls(
            in_channels=unet.config.in_channels,
            flip_sin_to_cos=unet.config.flip_sin_to_cos,
            freq_shift=unet.config.freq_shift,
            down_block_types=unet.config.down_block_types,
            only_cross_attention=unet.config.only_cross_attention,
            block_out_channels=unet.config.block_out_channels,
            layers_per_block=unet.config.layers_per_block,
            downsample_padding=unet.config.downsample_padding,
            mid_block_scale_factor=unet.config.mid_block_scale_factor,
            act_fn=unet.config.act_fn,
            norm_num_groups=unet.config.norm_num_groups,
            norm_eps=unet.config.norm_eps,
            cross_attention_dim=unet.config.cross_attention_dim,
            attention_head_dim=unet.config.attention_head_dim,
374
            num_attention_heads=unet.config.num_attention_heads,
Henrik Forstén's avatar
Henrik Forstén committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
            use_linear_projection=unet.config.use_linear_projection,
            class_embed_type=unet.config.class_embed_type,
            num_class_embeds=unet.config.num_class_embeds,
            upcast_attention=unet.config.upcast_attention,
            resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
            projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
            controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
            conditioning_embedding_out_channels=conditioning_embedding_out_channels,
        )

        if load_weights_from_unet:
            controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
            controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
            controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())

            if controlnet.class_embedding:
                controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())

            controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
            controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())

        return controlnet

398
399
    @property
    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
Patrick von Platen's avatar
Patrick von Platen committed
400
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
401
402
403
404
405
406
407
408
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
409
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
410
411
412
413
414
415
416
417
418
419
420
421
422
423
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
Patrick von Platen's avatar
Patrick von Platen committed
424
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
425
        r"""
Steven Liu's avatar
Steven Liu committed
426
427
        Sets the attention processor to use to compute attention.

428
        Parameters:
Steven Liu's avatar
Steven Liu committed
429
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
430
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
431
432
433
434
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

458
459
460
461
462
463
464
    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

465
466
467
468
469
    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
    def set_attention_slice(self, slice_size):
        r"""
        Enable sliced attention computation.

Steven Liu's avatar
Steven Liu committed
470
471
        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.
472
473
474

        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
Steven Liu's avatar
Steven Liu committed
475
476
477
478
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
479
480
481
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
482
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
483
484
485
486
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
487
                fn_recursive_retrieve_sliceable_dims(child)
488
489
490

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
491
            fn_recursive_retrieve_sliceable_dims(module)
492

Alexander Pivovarov's avatar
Alexander Pivovarov committed
493
        num_sliceable_layers = len(sliceable_head_dims)
494
495
496
497
498
499
500

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
501
            slice_size = num_sliceable_layers * [1]
502

Alexander Pivovarov's avatar
Alexander Pivovarov committed
503
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )

        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
            module.gradient_checkpointing = value

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        controlnet_cond: torch.FloatTensor,
541
        conditioning_scale: float = 1.0,
542
543
544
545
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
546
        guess_mode: bool = False,
547
548
        return_dict: bool = True,
    ) -> Union[ControlNetOutput, Tuple]:
Steven Liu's avatar
Steven Liu committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        """
        The [`ControlNetModel`] forward method.

        Args:
            sample (`torch.FloatTensor`):
                The noisy input tensor.
            timestep (`Union[torch.Tensor, float, int]`):
                The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.Tensor`):
                The encoder hidden states.
            controlnet_cond (`torch.FloatTensor`):
                The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
            conditioning_scale (`float`, defaults to `1.0`):
                The scale factor for ControlNet outputs.
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
            cross_attention_kwargs(`dict[str]`, *optional*, defaults to `None`):
                A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
            guess_mode (`bool`, defaults to `False`):
                In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
                you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
            return_dict (`bool`, defaults to `True`):
                Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.

        Returns:
            [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
                If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
                returned where the first element is the sample tensor.
        """
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        # check channel order
        channel_order = self.config.controlnet_conditioning_channel_order

        if channel_order == "rgb":
            # in rgb order by default
            ...
        elif channel_order == "bgr":
            controlnet_cond = torch.flip(controlnet_cond, dims=[1])
        else:
            raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")

        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
618
        t_emb = t_emb.to(dtype=sample.dtype)
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

        emb = self.time_embedding(t_emb, timestep_cond)

        if self.class_embedding is not None:
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb

        # 2. pre-process
        sample = self.conv_in(sample)

        controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)

637
        sample = sample + controlnet_cond
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )

        # 5. Control net blocks

        controlnet_down_block_res_samples = ()

        for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
            down_block_res_sample = controlnet_block(down_block_res_sample)
671
            controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
672
673
674
675
676

        down_block_res_samples = controlnet_down_block_res_samples

        mid_block_res_sample = self.controlnet_mid_block(sample)

677
        # 6. scaling
678
        if guess_mode and not self.config.global_pool_conditions:
679
680
681
            scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device)  # 0.1 to 1.0

            scales = scales * conditioning_scale
682
            down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
683
            mid_block_res_sample = mid_block_res_sample * scales[-1]  # last one
684
685
        else:
            down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
686
            mid_block_res_sample = mid_block_res_sample * conditioning_scale
687

688
689
690
691
692
693
        if self.config.global_pool_conditions:
            down_block_res_samples = [
                torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
            ]
            mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)

694
695
696
697
698
699
700
701
702
703
704
705
        if not return_dict:
            return (down_block_res_samples, mid_block_res_sample)

        return ControlNetOutput(
            down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
        )


def zero_module(module):
    for p in module.parameters():
        nn.init.zeros_(p)
    return module