unet_kandinsky3.py 20.1 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
19
20
21
from dataclasses import dataclass
from typing import Dict, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

22
23
24
25
26
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput, logging
from ..attention_processor import Attention, AttentionProcessor, AttnProcessor
from ..embeddings import TimestepEmbedding, Timesteps
from ..modeling_utils import ModelMixin
27
28
29
30
31
32
33


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class Kandinsky3UNetOutput(BaseOutput):
34
    sample: torch.Tensor = None
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63


class Kandinsky3EncoderProj(nn.Module):
    def __init__(self, encoder_hid_dim, cross_attention_dim):
        super().__init__()
        self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False)
        self.projection_norm = nn.LayerNorm(cross_attention_dim)

    def forward(self, x):
        x = self.projection_linear(x)
        x = self.projection_norm(x)
        return x


class Kandinsky3UNet(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        in_channels: int = 4,
        time_embedding_dim: int = 1536,
        groups: int = 32,
        attention_head_dim: int = 64,
        layers_per_block: Union[int, Tuple[int]] = 3,
        block_out_channels: Tuple[int] = (384, 768, 1536, 3072),
        cross_attention_dim: Union[int, Tuple[int]] = 4096,
        encoder_hid_dim: int = 4096,
    ):
        super().__init__()

64
        # TODO(Yiyi): Give better name and put into config for the following 4 parameters
65
66
67
68
69
70
71
        expansion_ratio = 4
        compression_ratio = 2
        add_cross_attention = (False, True, True, True)
        add_self_attention = (False, True, True, True)

        out_channels = in_channels
        init_channels = block_out_channels[0] // 2
72
        self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

        self.time_embedding = TimestepEmbedding(
            init_channels,
            time_embedding_dim,
        )

        self.add_time_condition = Kandinsky3AttentionPooling(
            time_embedding_dim, cross_attention_dim, attention_head_dim
        )

        self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1)

        self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim)

        hidden_dims = [init_channels] + list(block_out_channels)
        in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
89
        text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention]
90
91
92
93
94
95
96
97
98
99
100
        num_blocks = len(block_out_channels) * [layers_per_block]
        layer_params = [num_blocks, text_dims, add_self_attention]
        rev_layer_params = map(reversed, layer_params)

        cat_dims = []
        self.num_levels = len(in_out_dims)
        self.down_blocks = nn.ModuleList([])
        for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(
            zip(in_out_dims, *layer_params)
        ):
            down_sample = level != (self.num_levels - 1)
101
            cat_dims.append(out_dim if level != (self.num_levels - 1) else 0)
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
            self.down_blocks.append(
                Kandinsky3DownSampleBlock(
                    in_dim,
                    out_dim,
                    time_embedding_dim,
                    text_dim,
                    res_block_num,
                    groups,
                    attention_head_dim,
                    expansion_ratio,
                    compression_ratio,
                    down_sample,
                    self_attention,
                )
            )

        self.up_blocks = nn.ModuleList([])
        for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(
            zip(reversed(in_out_dims), *rev_layer_params)
        ):
            up_sample = level != 0
            self.up_blocks.append(
                Kandinsky3UpSampleBlock(
                    in_dim,
                    cat_dims.pop(),
                    out_dim,
                    time_embedding_dim,
                    text_dim,
                    res_block_num,
                    groups,
                    attention_head_dim,
                    expansion_ratio,
                    compression_ratio,
                    up_sample,
                    self_attention,
                )
            )

        self.conv_norm_out = nn.GroupNorm(groups, init_channels)
        self.conv_act_out = nn.SiLU()
        self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
206
        self.set_attn_processor(AttnProcessor())
207
208

    def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True):
209
210
211
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
212
213
214
215
216
217
218
219
220

        if not torch.is_tensor(timestep):
            dtype = torch.float32 if isinstance(timestep, float) else torch.int32
            timestep = torch.tensor([timestep], dtype=dtype, device=sample.device)
        elif len(timestep.shape) == 0:
            timestep = timestep[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timestep = timestep.expand(sample.shape[0])
221
        time_embed_input = self.time_proj(timestep).to(sample.dtype)
222
223
        time_embed = self.time_embedding(time_embed_input)

224
        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
225

226
227
        if encoder_hidden_states is not None:
            time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask)
228
229

        hidden_states = []
230
        sample = self.conv_in(sample)
231
        for level, down_sample in enumerate(self.down_blocks):
232
            sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
233
            if level != self.num_levels - 1:
234
                hidden_states.append(sample)
235
236
237

        for level, up_sample in enumerate(self.up_blocks):
            if level != 0:
238
239
                sample = torch.cat([sample, hidden_states.pop()], dim=1)
            sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
240

241
242
243
        sample = self.conv_norm_out(sample)
        sample = self.conv_act_out(sample)
        sample = self.conv_out(sample)
244
245

        if not return_dict:
246
247
            return (sample,)
        return Kandinsky3UNetOutput(sample=sample)
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266


class Kandinsky3UpSampleBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        cat_dim,
        out_channels,
        time_embed_dim,
        context_dim=None,
        num_blocks=3,
        groups=32,
        head_dim=64,
        expansion_ratio=4,
        compression_ratio=2,
        up_sample=True,
        self_attention=True,
    ):
        super().__init__()
267
        up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1)
268
269
270
271
272
273
274
275
276
277
278
279
        hidden_channels = (
            [(in_channels + cat_dim, in_channels)]
            + [(in_channels, in_channels)] * (num_blocks - 2)
            + [(in_channels, out_channels)]
        )
        attentions = []
        resnets_in = []
        resnets_out = []

        self.self_attention = self_attention
        self.context_dim = context_dim

280
281
282
        if self_attention:
            attentions.append(
                Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
283
            )
284
285
        else:
            attentions.append(nn.Identity())
286
287
288
289
290

        for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
            resnets_in.append(
                Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)
            )
291
292
293
294
295
296

            if context_dim is not None:
                attentions.append(
                    Kandinsky3AttentionBlock(
                        in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
                    )
297
                )
298
299
300
            else:
                attentions.append(nn.Identity())

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
            resnets_out.append(
                Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets_in = nn.ModuleList(resnets_in)
        self.resnets_out = nn.ModuleList(resnets_out)

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
            x = resnet_in(x, time_embed)
            if self.context_dim is not None:
                x = attention(x, time_embed, context, context_mask, image_mask)
            x = resnet_out(x, time_embed)

        if self.self_attention:
            x = self.attentions[0](x, time_embed, image_mask=image_mask)
        return x


class Kandinsky3DownSampleBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        time_embed_dim,
        context_dim=None,
        num_blocks=3,
        groups=32,
        head_dim=64,
        expansion_ratio=4,
        compression_ratio=2,
        down_sample=True,
        self_attention=True,
    ):
        super().__init__()
        attentions = []
        resnets_in = []
        resnets_out = []

        self.self_attention = self_attention
        self.context_dim = context_dim

344
345
346
        if self_attention:
            attentions.append(
                Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
347
            )
348
349
        else:
            attentions.append(nn.Identity())
350

351
        up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]]
352
353
354
355
356
        hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
        for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
            resnets_in.append(
                Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
            )
357
358
359
360
361
362

            if context_dim is not None:
                attentions.append(
                    Kandinsky3AttentionBlock(
                        out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
                    )
363
                )
364
365
366
            else:
                attentions.append(nn.Identity())

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
            resnets_out.append(
                Kandinsky3ResNetBlock(
                    out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets_in = nn.ModuleList(resnets_in)
        self.resnets_out = nn.ModuleList(resnets_out)

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        if self.self_attention:
            x = self.attentions[0](x, time_embed, image_mask=image_mask)

        for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
            x = resnet_in(x, time_embed)
            if self.context_dim is not None:
                x = attention(x, time_embed, context, context_mask, image_mask)
            x = resnet_out(x, time_embed)
        return x


class Kandinsky3ConditionalGroupNorm(nn.Module):
    def __init__(self, groups, normalized_shape, context_dim):
        super().__init__()
        self.norm = nn.GroupNorm(groups, normalized_shape, affine=False)
        self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape))
        self.context_mlp[1].weight.data.zero_()
        self.context_mlp[1].bias.data.zero_()

    def forward(self, x, context):
        context = self.context_mlp(context)

        for _ in range(len(x.shape[2:])):
            context = context.unsqueeze(-1)

        scale, shift = context.chunk(2, dim=1)
        x = self.norm(x) * (scale + 1.0) + shift
        return x


class Kandinsky3Block(nn.Module):
    def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
        super().__init__()
        self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
        self.activation = nn.SiLU()
413
414
415
416
417
        if up_resolution is not None and up_resolution:
            self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
        else:
            self.up_sample = nn.Identity()

418
419
        padding = int(kernel_size > 1)
        self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
420
421
422
423
424

        if up_resolution is not None and not up_resolution:
            self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
        else:
            self.down_sample = nn.Identity()
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

    def forward(self, x, time_embed):
        x = self.group_norm(x, time_embed)
        x = self.activation(x)
        x = self.up_sample(x)
        x = self.projection(x)
        x = self.down_sample(x)
        return x


class Kandinsky3ResNetBlock(nn.Module):
    def __init__(
        self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None]
    ):
        super().__init__()
        kernel_sizes = [1, 3, 3, 1]
        hidden_channel = max(in_channels, out_channels) // compression_ratio
        hidden_channels = (
            [(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)]
        )
        self.resnet_blocks = nn.ModuleList(
            [
                Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution)
                for (in_channel, out_channel), kernel_size, up_resolution in zip(
                    hidden_channels, kernel_sizes, up_resolutions
                )
            ]
        )
453
454
455
456
        self.shortcut_up_sample = (
            nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
            if True in up_resolutions
            else nn.Identity()
457
        )
458
459
        self.shortcut_projection = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity()
460
        )
461
462
463
464
        self.shortcut_down_sample = (
            nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
            if False in up_resolutions
            else nn.Identity()
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        )

    def forward(self, x, time_embed):
        out = x
        for resnet_block in self.resnet_blocks:
            out = resnet_block(out, time_embed)

        x = self.shortcut_up_sample(x)
        x = self.shortcut_projection(x)
        x = self.shortcut_down_sample(x)
        x = x + out
        return x


class Kandinsky3AttentionPooling(nn.Module):
    def __init__(self, num_channels, context_dim, head_dim=64):
        super().__init__()
482
483
484
485
486
487
488
        self.attention = Attention(
            context_dim,
            context_dim,
            dim_head=head_dim,
            out_dim=num_channels,
            out_bias=False,
        )
489
490

    def forward(self, x, context, context_mask=None):
491
        context_mask = context_mask.to(dtype=context.dtype)
492
493
494
495
496
497
498
499
        context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
        return x + context.squeeze(1)


class Kandinsky3AttentionBlock(nn.Module):
    def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
        super().__init__()
        self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
500
501
502
503
504
505
506
        self.attention = Attention(
            num_channels,
            context_dim or num_channels,
            dim_head=head_dim,
            out_dim=num_channels,
            out_bias=False,
        )
507
508
509
510
511
512
513
514
515
516
517
518
519
520

        hidden_channels = expansion_ratio * num_channels
        self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
        self.feed_forward = nn.Sequential(
            nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False),
            nn.SiLU(),
            nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False),
        )

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        height, width = x.shape[-2:]
        out = self.in_norm(x, time_embed)
        out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1)
        context = context if context is not None else out
521
522
        if context_mask is not None:
            context_mask = context_mask.to(dtype=context.dtype)
523

524
        out = self.attention(out, context, context_mask)
525
526
527
528
529
530
531
        out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width)
        x = x + out

        out = self.out_norm(x, time_embed)
        out = self.feed_forward(out)
        x = x + out
        return x