prior_transformer.py 16.2 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
from dataclasses import dataclass
2
from typing import Dict, Optional, Union
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10

import torch
import torch.nn.functional as F
from torch import nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
11
from .attention_processor import AttentionProcessor, AttnProcessor
Will Berman's avatar
Will Berman committed
12
from .embeddings import TimestepEmbedding, Timesteps
13
from .modeling_utils import ModelMixin
Will Berman's avatar
Will Berman committed
14
15
16
17
18


@dataclass
class PriorTransformerOutput(BaseOutput):
    """
Steven Liu's avatar
Steven Liu committed
19
20
    The output of [`PriorTransformer`].

Will Berman's avatar
Will Berman committed
21
22
23
24
25
26
27
28
29
30
    Args:
        predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
            The predicted CLIP image embedding conditioned on the CLIP text embedding input.
    """

    predicted_image_embedding: torch.FloatTensor


class PriorTransformer(ModelMixin, ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
31
    A Prior Transformer model.
Will Berman's avatar
Will Berman committed
32
33
34
35
36

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
        num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use.
YiYi Xu's avatar
YiYi Xu committed
37
38
39
        embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `hidden_states`
        num_embeddings (`int`, *optional*, defaults to 77):
            The number of embeddings of the model input `hidden_states`
Will Berman's avatar
Will Berman committed
40
        additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
Steven Liu's avatar
Steven Liu committed
41
            projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
Will Berman's avatar
Will Berman committed
42
43
            additional_embeddings`.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
YiYi Xu's avatar
YiYi Xu committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        time_embed_act_fn (`str`, *optional*, defaults to 'silu'):
            The activation function to use to create timestep embeddings.
        norm_in_type (`str`, *optional*, defaults to None): The normalization layer to apply on hidden states before
            passing to Transformer blocks. Set it to `None` if normalization is not needed.
        embedding_proj_norm_type (`str`, *optional*, defaults to None):
            The normalization layer to apply on the input `proj_embedding`. Set it to `None` if normalization is not
            needed.
        encoder_hid_proj_type (`str`, *optional*, defaults to `linear`):
            The projection layer to apply on the input `encoder_hidden_states`. Set it to `None` if
            `encoder_hidden_states` is `None`.
        added_emb_type (`str`, *optional*, defaults to `prd`): Additional embeddings to condition the model.
            Choose from `prd` or `None`. if choose `prd`, it will prepend a token indicating the (quantized) dot
            product between the text embedding and image embedding as proposed in the unclip paper
            https://arxiv.org/abs/2204.06125 If it is `None`, no additional embeddings will be prepended.
        time_embed_dim (`int, *optional*, defaults to None): The dimension of timestep embeddings.
            If None, will be set to `num_attention_heads * attention_head_dim`
        embedding_proj_dim (`int`, *optional*, default to None):
            The dimension of `proj_embedding`. If None, will be set to `embedding_dim`.
        clip_embed_dim (`int`, *optional*, default to None):
            The dimension of the output. If None, will be set to `embedding_dim`.
Will Berman's avatar
Will Berman committed
64
65
66
67
68
69
70
71
72
73
74
75
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 32,
        attention_head_dim: int = 64,
        num_layers: int = 20,
        embedding_dim: int = 768,
        num_embeddings=77,
        additional_embeddings=4,
        dropout: float = 0.0,
YiYi Xu's avatar
YiYi Xu committed
76
77
78
79
80
81
82
83
        time_embed_act_fn: str = "silu",
        norm_in_type: Optional[str] = None,  # layer
        embedding_proj_norm_type: Optional[str] = None,  # layer
        encoder_hid_proj_type: Optional[str] = "linear",  # linear
        added_emb_type: Optional[str] = "prd",  # prd
        time_embed_dim: Optional[int] = None,
        embedding_proj_dim: Optional[int] = None,
        clip_embed_dim: Optional[int] = None,
Will Berman's avatar
Will Berman committed
84
85
86
87
88
89
90
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.additional_embeddings = additional_embeddings

YiYi Xu's avatar
YiYi Xu committed
91
92
93
94
        time_embed_dim = time_embed_dim or inner_dim
        embedding_proj_dim = embedding_proj_dim or embedding_dim
        clip_embed_dim = clip_embed_dim or embedding_dim

Will Berman's avatar
Will Berman committed
95
        self.time_proj = Timesteps(inner_dim, True, 0)
YiYi Xu's avatar
YiYi Xu committed
96
        self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn)
Will Berman's avatar
Will Berman committed
97
98
99

        self.proj_in = nn.Linear(embedding_dim, inner_dim)

YiYi Xu's avatar
YiYi Xu committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        if embedding_proj_norm_type is None:
            self.embedding_proj_norm = None
        elif embedding_proj_norm_type == "layer":
            self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim)
        else:
            raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}")

        self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim)

        if encoder_hid_proj_type is None:
            self.encoder_hidden_states_proj = None
        elif encoder_hid_proj_type == "linear":
            self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim)
        else:
            raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}")
Will Berman's avatar
Will Berman committed
115
116
117

        self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim))

YiYi Xu's avatar
YiYi Xu committed
118
119
120
121
122
123
124
125
        if added_emb_type == "prd":
            self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim))
        elif added_emb_type is None:
            self.prd_embedding = None
        else:
            raise ValueError(
                f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`."
            )
Will Berman's avatar
Will Berman committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    activation_fn="gelu",
                    attention_bias=True,
                )
                for d in range(num_layers)
            ]
        )

YiYi Xu's avatar
YiYi Xu committed
141
142
143
144
145
146
147
        if norm_in_type == "layer":
            self.norm_in = nn.LayerNorm(inner_dim)
        elif norm_in_type is None:
            self.norm_in = None
        else:
            raise ValueError(f"Unsupported norm_in_type: {norm_in_type}.")

Will Berman's avatar
Will Berman committed
148
        self.norm_out = nn.LayerNorm(inner_dim)
YiYi Xu's avatar
YiYi Xu committed
149
150

        self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim)
Will Berman's avatar
Will Berman committed
151
152

        causal_attention_mask = torch.full(
153
            [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0
Will Berman's avatar
Will Berman committed
154
155
156
157
158
        )
        causal_attention_mask.triu_(1)
        causal_attention_mask = causal_attention_mask[None, ...]
        self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False)

YiYi Xu's avatar
YiYi Xu committed
159
160
        self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim))
        self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim))
Will Berman's avatar
Will Berman committed
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    @property
    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
Steven Liu's avatar
Steven Liu committed
190
191
        Sets the attention processor to use to compute attention.

192
        Parameters:
Steven Liu's avatar
Steven Liu committed
193
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
194
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
195
196
197
198
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

Will Berman's avatar
Will Berman committed
229
230
231
232
233
    def forward(
        self,
        hidden_states,
        timestep: Union[torch.Tensor, float, int],
        proj_embedding: torch.FloatTensor,
YiYi Xu's avatar
YiYi Xu committed
234
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
235
236
237
238
        attention_mask: Optional[torch.BoolTensor] = None,
        return_dict: bool = True,
    ):
        """
Steven Liu's avatar
Steven Liu committed
239
240
        The [`PriorTransformer`] forward method.

Will Berman's avatar
Will Berman committed
241
242
        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
Steven Liu's avatar
Steven Liu committed
243
244
                The currently predicted image embeddings.
            timestep (`torch.LongTensor`):
Will Berman's avatar
Will Berman committed
245
246
247
248
249
250
251
252
                Current denoising step.
            proj_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
                Projected embedding vector the denoising process is conditioned on.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
                Hidden states of the text embeddings the denoising process is conditioned on.
            attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`):
                Text mask for the text embeddings.
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
253
                Whether or not to return a [`~models.prior_transformer.PriorTransformerOutput`] instead of a plain
Will Berman's avatar
Will Berman committed
254
255
256
257
                tuple.

        Returns:
            [`~models.prior_transformer.PriorTransformerOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
258
259
                If return_dict is True, a [`~models.prior_transformer.PriorTransformerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
Will Berman's avatar
Will Berman committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        """
        batch_size = hidden_states.shape[0]

        timesteps = timestep
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(hidden_states.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device)

        timesteps_projected = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might be fp16, so we need to cast here.
        timesteps_projected = timesteps_projected.to(dtype=self.dtype)
        time_embeddings = self.time_embedding(timesteps_projected)

YiYi Xu's avatar
YiYi Xu committed
279
280
281
        if self.embedding_proj_norm is not None:
            proj_embedding = self.embedding_proj_norm(proj_embedding)

Will Berman's avatar
Will Berman committed
282
        proj_embeddings = self.embedding_proj(proj_embedding)
YiYi Xu's avatar
YiYi Xu committed
283
284
285
286
287
        if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
            encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states)
        elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
            raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set")

Will Berman's avatar
Will Berman committed
288
        hidden_states = self.proj_in(hidden_states)
YiYi Xu's avatar
YiYi Xu committed
289

Will Berman's avatar
Will Berman committed
290
291
        positional_embeddings = self.positional_embedding.to(hidden_states.dtype)

YiYi Xu's avatar
YiYi Xu committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        additional_embeds = []
        additional_embeddings_len = 0

        if encoder_hidden_states is not None:
            additional_embeds.append(encoder_hidden_states)
            additional_embeddings_len += encoder_hidden_states.shape[1]

        if len(proj_embeddings.shape) == 2:
            proj_embeddings = proj_embeddings[:, None, :]

        if len(hidden_states.shape) == 2:
            hidden_states = hidden_states[:, None, :]

        additional_embeds = additional_embeds + [
            proj_embeddings,
            time_embeddings[:, None, :],
            hidden_states,
        ]

        if self.prd_embedding is not None:
            prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1)
            additional_embeds.append(prd_embedding)

Will Berman's avatar
Will Berman committed
315
        hidden_states = torch.cat(
YiYi Xu's avatar
YiYi Xu committed
316
            additional_embeds,
Will Berman's avatar
Will Berman committed
317
318
319
            dim=1,
        )

YiYi Xu's avatar
YiYi Xu committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
        additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1
        if positional_embeddings.shape[1] < hidden_states.shape[1]:
            positional_embeddings = F.pad(
                positional_embeddings,
                (
                    0,
                    0,
                    additional_embeddings_len,
                    self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
                ),
                value=0.0,
            )

Will Berman's avatar
Will Berman committed
334
335
336
337
338
339
340
341
        hidden_states = hidden_states + positional_embeddings

        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0)
            attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype)
            attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0)

YiYi Xu's avatar
YiYi Xu committed
342
343
344
        if self.norm_in is not None:
            hidden_states = self.norm_in(hidden_states)

Will Berman's avatar
Will Berman committed
345
346
347
348
        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, attention_mask=attention_mask)

        hidden_states = self.norm_out(hidden_states)
YiYi Xu's avatar
YiYi Xu committed
349
350
351
352
353
354

        if self.prd_embedding is not None:
            hidden_states = hidden_states[:, -1]
        else:
            hidden_states = hidden_states[:, additional_embeddings_len:]

Will Berman's avatar
Will Berman committed
355
356
357
358
359
360
361
362
363
364
        predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states)

        if not return_dict:
            return (predicted_image_embedding,)

        return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding)

    def post_process_latents(self, prior_latents):
        prior_latents = (prior_latents * self.clip_std) + self.clip_mean
        return prior_latents