attention.py 10.9 KB
Newer Older
1
2
3
4
5
6
import math

import torch
from torch import nn


Patrick von Platen's avatar
Patrick von Platen committed
7
# unet_grad_tts.py
Patrick von Platen's avatar
Patrick von Platen committed
8
# TODO(Patrick) - weird linear attention layer. Check with: https://github.com/huawei-noah/Speech-Backbones/issues/15
Patrick von Platen's avatar
Patrick von Platen committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class LinearAttention(torch.nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
        self.dim_head = dim_head
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        q, k, v = (
            qkv.reshape(b, 3, self.heads, self.dim_head, h, w)
            .permute(1, 0, 2, 3, 4, 5)
            .reshape(3, b, self.heads, self.dim_head, -1)
        )
        k = k.softmax(dim=-1)
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
        out = out.reshape(b, self.heads, self.dim_head, h, w).reshape(b, self.heads * self.dim_head, h, w)
        return self.to_out(out)

32

Patrick von Platen's avatar
Patrick von Platen committed
33
# the main attention block that is used for all models
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
39
40
41
42
43
44
45
46
class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
Patrick von Platen's avatar
Patrick von Platen committed
47
        num_groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
48
49
        use_checkpoint=False,
        encoder_channels=None,
50
        use_new_attention_order=False,  # TODO(Patrick) -> is never used, maybe delete?
Patrick von Platen's avatar
Patrick von Platen committed
51
        overwrite_qkv=False,
Patrick von Platen's avatar
Patrick von Platen committed
52
53
        overwrite_linear=False,
        rescale_output_factor=1.0,
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56
57
58
59
60
61
62
63
    ):
        super().__init__()
        self.channels = channels
        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
64

Patrick von Platen's avatar
Patrick von Platen committed
65
        self.use_checkpoint = use_checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
66
67
        self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-5, affine=True)
        self.qkv = nn.Conv1d(channels, channels * 3, 1)
Patrick von Platen's avatar
Patrick von Platen committed
68
        self.n_heads = self.num_heads
Patrick von Platen's avatar
Patrick von Platen committed
69
        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
70
71

        if encoder_channels is not None:
Patrick von Platen's avatar
Patrick von Platen committed
72
            self.encoder_kv = nn.Conv1d(encoder_channels, channels * 2, 1)
Patrick von Platen's avatar
Patrick von Platen committed
73

Patrick von Platen's avatar
Patrick von Platen committed
74
        self.proj_out = zero_module(nn.Conv1d(channels, channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
75

Patrick von Platen's avatar
Patrick von Platen committed
76
77
78
        self.overwrite_qkv = overwrite_qkv
        if overwrite_qkv:
            in_channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
79
            self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
Patrick von Platen's avatar
Patrick von Platen committed
80
81
82
83
            self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
Patrick von Platen's avatar
Patrick von Platen committed
84

Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
88
89
90
91
92
93
        self.overwrite_linear = overwrite_linear
        if self.overwrite_linear:
            num_groups = min(channels // 4, 32)
            self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
            self.NIN_0 = NIN(channels, channels)
            self.NIN_1 = NIN(channels, channels)
            self.NIN_2 = NIN(channels, channels)
            self.NIN_3 = NIN(channels, channels)

Patrick von Platen's avatar
Patrick von Platen committed
94
95
            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=channels, eps=1e-6)

Patrick von Platen's avatar
Patrick von Platen committed
96
        self.is_overwritten = False
97

Patrick von Platen's avatar
Patrick von Platen committed
98
99
    def set_weights(self, module):
        if self.overwrite_qkv:
Patrick von Platen's avatar
Patrick von Platen committed
100
101
102
            qkv_weight = torch.cat([module.q.weight.data, module.k.weight.data, module.v.weight.data], dim=0)[
                :, :, :, 0
            ]
Patrick von Platen's avatar
Patrick von Platen committed
103
            qkv_bias = torch.cat([module.q.bias.data, module.k.bias.data, module.v.bias.data], dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
104

Patrick von Platen's avatar
Patrick von Platen committed
105
106
107
            self.qkv.weight.data = qkv_weight
            self.qkv.bias.data = qkv_bias

Patrick von Platen's avatar
Patrick von Platen committed
108
            proj_out = zero_module(nn.Conv1d(self.channels, self.channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
109
110
            proj_out.weight.data = module.proj_out.weight.data[:, :, :, 0]
            proj_out.bias.data = module.proj_out.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
111

Patrick von Platen's avatar
Patrick von Platen committed
112
            self.proj_out = proj_out
Patrick von Platen's avatar
Patrick von Platen committed
113
        elif self.overwrite_linear:
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116
            self.qkv.weight.data = torch.concat(
                [self.NIN_0.W.data.T, self.NIN_1.W.data.T, self.NIN_2.W.data.T], dim=0
            )[:, :, None]
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
120
            self.qkv.bias.data = torch.concat([self.NIN_0.b.data, self.NIN_1.b.data, self.NIN_2.b.data], dim=0)

            self.proj_out.weight.data = self.NIN_3.W.data.T[:, :, None]
            self.proj_out.bias.data = self.NIN_3.b.data
Patrick von Platen's avatar
Patrick von Platen committed
121

Patrick von Platen's avatar
Patrick von Platen committed
122
123
124
            self.norm.weight.data = self.GroupNorm_0.weight.data
            self.norm.bias.data = self.GroupNorm_0.bias.data

Patrick von Platen's avatar
Patrick von Platen committed
125
    def forward(self, x, encoder_out=None):
Patrick von Platen's avatar
Patrick von Platen committed
126
        if (self.overwrite_qkv or self.overwrite_linear) and not self.is_overwritten:
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130
131
            self.set_weights(self)
            self.is_overwritten = True

        b, c, *spatial = x.shape
        hid_states = self.norm(x).view(b, c, -1)
Patrick von Platen's avatar
Patrick von Platen committed
132

Patrick von Platen's avatar
Patrick von Platen committed
133
        qkv = self.qkv(hid_states)
Patrick von Platen's avatar
Patrick von Platen committed
134
135
136
137
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140

        if encoder_out is not None:
            encoder_kv = self.encoder_kv(encoder_out)
Patrick von Platen's avatar
Patrick von Platen committed
141
142
143
144
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
            k = torch.cat([ek, k], dim=-1)
            v = torch.cat([ev, v], dim=-1)
Patrick von Platen's avatar
Patrick von Platen committed
145

Patrick von Platen's avatar
Patrick von Platen committed
146
147
148
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
149

Patrick von Platen's avatar
Patrick von Platen committed
150
        a = torch.einsum("bts,bcs->bct", weight, v)
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
        h = a.reshape(bs, -1, length)

        h = self.proj_out(h)
Patrick von Platen's avatar
Patrick von Platen committed
154
        h = h.reshape(b, c, *spatial)
Patrick von Platen's avatar
Patrick von Platen committed
155

Patrick von Platen's avatar
Patrick von Platen committed
156
        result = x + h
Patrick von Platen's avatar
Patrick von Platen committed
157

Patrick von Platen's avatar
Patrick von Platen committed
158
        result = result / self.rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
159

Patrick von Platen's avatar
Patrick von Platen committed
160
        return result
Patrick von Platen's avatar
Patrick von Platen committed
161
162
163


# unet_score_estimation.py
Patrick von Platen's avatar
Patrick von Platen committed
164
# class AttnBlockpp(nn.Module):
165
166
#    """Channel-wise self-attention block. Modified from DDPM."""
#
Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
172
173
174
175
176
177
178
179
#    def __init__(
#        self,
#        channels,
#        skip_rescale=False,
#        init_scale=0.0,
#        num_heads=1,
#        num_head_channels=-1,
#        use_checkpoint=False,
#        encoder_channels=None,
#        use_new_attention_order=False,  # TODO(Patrick) -> is never used, maybe delete?
#        overwrite_qkv=False,
#        overwrite_from_grad_tts=False,
#    ):
180
#        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
181
182
#        num_groups = min(channels // 4, 32)
#        self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=channels, eps=1e-6)
183
184
185
186
187
188
#        self.NIN_0 = NIN(channels, channels)
#        self.NIN_1 = NIN(channels, channels)
#        self.NIN_2 = NIN(channels, channels)
#        self.NIN_3 = NIN(channels, channels, init_scale=init_scale)
#        self.skip_rescale = skip_rescale
#
Patrick von Platen's avatar
Patrick von Platen committed
189
190
191
192
193
194
195
196
197
198
#        self.channels = channels
#        if num_head_channels == -1:
#            self.num_heads = num_heads
#        else:
#            assert (
#                channels % num_head_channels == 0
#            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
#            self.num_heads = channels // num_head_channels
#
#        self.use_checkpoint = use_checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
199
200
#        self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
#        self.qkv = nn.Conv1d(channels, channels * 3, 1)
Patrick von Platen's avatar
Patrick von Platen committed
201
202
#        self.n_heads = self.num_heads
#
Patrick von Platen's avatar
Patrick von Platen committed
203
#        self.proj_out = zero_module(nn.Conv1d(channels, channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
204
205
206
207
208
209
210
211
212
213
#
#        self.is_weight_set = False
#
#    def set_weights(self):
#        self.qkv.weight.data = torch.concat([self.NIN_0.W.data.T, self.NIN_1.W.data.T, self.NIN_2.W.data.T], dim=0)[:, :, None]
#        self.qkv.bias.data = torch.concat([self.NIN_0.b.data, self.NIN_1.b.data, self.NIN_2.b.data], dim=0)
#
#        self.proj_out.weight.data = self.NIN_3.W.data.T[:, :, None]
#        self.proj_out.bias.data = self.NIN_3.b.data
#
Patrick von Platen's avatar
Patrick von Platen committed
214
215
216
#        self.norm.weight.data = self.GroupNorm_0.weight.data
#        self.norm.bias.data = self.GroupNorm_0.bias.data
#
217
#    def forward(self, x):
Patrick von Platen's avatar
Patrick von Platen committed
218
219
220
221
#        if not self.is_weight_set:
#            self.set_weights()
#            self.is_weight_set = True
#
222
223
224
225
226
227
228
229
230
231
232
233
#        B, C, H, W = x.shape
#        h = self.GroupNorm_0(x)
#        q = self.NIN_0(h)
#        k = self.NIN_1(h)
#        v = self.NIN_2(h)
#
#        w = torch.einsum("bchw,bcij->bhwij", q, k) * (int(C) ** (-0.5))
#        w = torch.reshape(w, (B, H, W, H * W))
#        w = F.softmax(w, dim=-1)
#        w = torch.reshape(w, (B, H, W, H, W))
#        h = torch.einsum("bhwij,bcij->bchw", w, v)
#        h = self.NIN_3(h)
Patrick von Platen's avatar
Patrick von Platen committed
234
#
235
#        if not self.skip_rescale:
Patrick von Platen's avatar
Patrick von Platen committed
236
#            result = x + h
237
#        else:
Patrick von Platen's avatar
Patrick von Platen committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#            result = (x + h) / np.sqrt(2.0)
#
#        result = self.forward_2(x)
#
#        return result
#
#    def forward_2(self, x, encoder_out=None):
#        b, c, *spatial = x.shape
#        hid_states = self.norm(x).view(b, c, -1)
#
#        qkv = self.qkv(hid_states)
#        bs, width, length = qkv.shape
#        assert width % (3 * self.n_heads) == 0
#        ch = width // (3 * self.n_heads)
#        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
#
#        if encoder_out is not None:
#            encoder_kv = self.encoder_kv(encoder_out)
#            assert encoder_kv.shape[1] == self.n_heads * ch * 2
#            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
#            k = torch.cat([ek, k], dim=-1)
#            v = torch.cat([ev, v], dim=-1)
#
#        scale = 1 / math.sqrt(math.sqrt(ch))
#        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
#        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
#
#        a = torch.einsum("bts,bcs->bct", weight, v)
#        h = a.reshape(bs, -1, length)
#
#        h = self.proj_out(h)
#        h = h.reshape(b, c, *spatial)
#
#        return (x + h) / np.sqrt(2.0)

Patrick von Platen's avatar
Patrick von Platen committed
273

Patrick von Platen's avatar
Patrick von Platen committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# TODO(Patrick) - this can and should be removed
def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


# TODO(Patrick) - remove once all weights have been converted -> not needed anymore then
class NIN(nn.Module):
    def __init__(self, in_dim, num_units, init_scale=0.1):
        super().__init__()
        self.W = nn.Parameter(torch.zeros(in_dim, num_units), requires_grad=True)
        self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)