push_to_hub.md 5.4 KB
Newer Older
Aryan's avatar
Aryan committed
1
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Steven Liu's avatar
Steven Liu committed
13
14
[[open-in-colab]]

15
16
17
# Sharing pipelines and models

Share your pipeline or models and schedulers on the Hub with the [`~diffusers.utils.PushToHubMixin`] class. This class:
Steven Liu's avatar
Steven Liu committed
18
19
20
21
22

1. creates a repository on the Hub
2. saves your model, scheduler, or pipeline files so they can be reloaded later
3. uploads folder containing these files to the Hub

23
24
25
This guide will show you how to upload your files to the Hub with the [`~diffusers.utils.PushToHubMixin`] class.

Log in to your Hugging Face account with your access [token](https://huggingface.co/settings/tokens).
Steven Liu's avatar
Steven Liu committed
26

27
28
<hfoptions id="login">
<hfoption id="notebook">
Steven Liu's avatar
Steven Liu committed
29
30
31
32
33
34
35

```py
from huggingface_hub import notebook_login

notebook_login()
```

36
37
38
39
40
41
42
43
44
45
</hfoption>
<hfoption id="hf CLI">

```bash
hf auth login
```

</hfoption>
</hfoptions>

Steven Liu's avatar
Steven Liu committed
46
47
## Models

48
To push a model to the Hub, call [`~diffusers.utils.PushToHubMixin.push_to_hub`] and specify the repository id of the model.
Steven Liu's avatar
Steven Liu committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

```py
from diffusers import ControlNetModel

controlnet = ControlNetModel(
    block_out_channels=(32, 64),
    layers_per_block=2,
    in_channels=4,
    down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
    cross_attention_dim=32,
    conditioning_embedding_out_channels=(16, 32),
)
controlnet.push_to_hub("my-controlnet-model")
```

64
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] method saves the model's `config.json` file and the weights are automatically saved as safetensors files.
Steven Liu's avatar
Steven Liu committed
65

66
Load the model again with [`~DiffusionPipeline.from_pretrained`].
Steven Liu's avatar
Steven Liu committed
67
68
69
70
71
72
73

```py
model = ControlNetModel.from_pretrained("your-namespace/my-controlnet-model")
```

## Scheduler

74
To push a scheduler to the Hub, call [`~diffusers.utils.PushToHubMixin.push_to_hub`] and specify the repository id of the scheduler.
Steven Liu's avatar
Steven Liu committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

```py
from diffusers import DDIMScheduler

scheduler = DDIMScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
)
scheduler.push_to_hub("my-controlnet-scheduler")
```

The [`~diffusers.utils.PushToHubMixin.push_to_hub`] function saves the scheduler's `scheduler_config.json` file to the specified repository.

91
Load the scheduler again with [`~SchedulerMixin.from_pretrained`].
Steven Liu's avatar
Steven Liu committed
92
93
94
95
96
97
98

```py
scheduler = DDIMScheduler.from_pretrained("your-namepsace/my-controlnet-scheduler")
```

## Pipeline

99
To push a pipeline to the Hub, initialize the pipeline components with your desired parameters.
Steven Liu's avatar
Steven Liu committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

```py
from diffusers import (
    UNet2DConditionModel,
    AutoencoderKL,
    DDIMScheduler,
    StableDiffusionPipeline,
)
from transformers import CLIPTextModel, CLIPTextConfig, CLIPTokenizer

unet = UNet2DConditionModel(
    block_out_channels=(32, 64),
    layers_per_block=2,
    sample_size=32,
    in_channels=4,
    out_channels=4,
    down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
    up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
    cross_attention_dim=32,
)

scheduler = DDIMScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
)

vae = AutoencoderKL(
    block_out_channels=[32, 64],
    in_channels=3,
    out_channels=3,
    down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
    up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
    latent_channels=4,
)

text_encoder_config = CLIPTextConfig(
    bos_token_id=0,
    eos_token_id=2,
    hidden_size=32,
    intermediate_size=37,
    layer_norm_eps=1e-05,
    num_attention_heads=4,
    num_hidden_layers=5,
    pad_token_id=1,
    vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
```

153
Pass all components to the pipeline and call [`~diffusers.utils.PushToHubMixin.push_to_hub`].
Steven Liu's avatar
Steven Liu committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

```py
components = {
    "unet": unet,
    "scheduler": scheduler,
    "vae": vae,
    "text_encoder": text_encoder,
    "tokenizer": tokenizer,
    "safety_checker": None,
    "feature_extractor": None,
}

pipeline = StableDiffusionPipeline(**components)
pipeline.push_to_hub("my-pipeline")
```

170
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] method saves each component to a subfolder in the repository. Load the pipeline again with [`~DiffusionPipeline.from_pretrained`].
Steven Liu's avatar
Steven Liu committed
171
172
173
174
175
176
177

```py
pipeline = StableDiffusionPipeline.from_pretrained("your-namespace/my-pipeline")
```

## Privacy

178
Set `private=True` in [`~diffusers.utils.PushToHubMixin.push_to_hub`] to keep a model, scheduler, or pipeline files private.
Steven Liu's avatar
Steven Liu committed
179
180

```py
181
controlnet.push_to_hub("my-controlnet-model-private", private=True)
Steven Liu's avatar
Steven Liu committed
182
183
```

184
Private repositories are only visible to you. Other users won't be able to clone the repository and it won't appear in search results. Even if a user has the URL to your private repository, they'll receive a `404 - Sorry, we can't find the page you are looking for`. You must be [logged in](https://huggingface.co/docs/huggingface_hub/quick-start#login) to load a model from a private repository.