test_latent_diffusion.py 6.58 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
18
19
20
21
22
import unittest

import numpy as np
import torch

from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel
23
from diffusers.utils.testing_utils import load_numpy, nightly, require_torch_gpu, slow, torch_device
24
25
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

26
27
from ...test_pipelines_common import PipelineTesterMixin

28
29
30
31

torch.backends.cuda.matmul.allow_tf32 = False


32
33
34
35
36
class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = LDMTextToImagePipeline
    test_cpu_offload = False

    def get_dummy_components(self):
37
        torch.manual_seed(0)
38
        unet = UNet2DConditionModel(
39
40
41
42
43
44
45
46
47
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
48
49
50
51
52
53
54
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
55
        torch.manual_seed(0)
56
57
        vae = AutoencoderKL(
            block_out_channels=(32, 64),
58
59
            in_channels=3,
            out_channels=3,
60
61
            down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"),
            up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"),
62
63
64
            latent_channels=4,
        )
        torch.manual_seed(0)
65
        text_encoder_config = CLIPTextConfig(
66
67
68
69
70
71
72
73
74
75
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
76
        text_encoder = CLIPTextModel(text_encoder_config)
77
78
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vqvae": vae,
            "bert": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
101
102

    def test_inference_text2img(self):
103
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
104

105
106
107
108
        components = self.get_dummy_components()
        pipe = LDMTextToImagePipeline(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)
109

110
111
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
112
113
        image_slice = image[0, -3:, -3:, -1]

114
115
        assert image.shape == (1, 16, 16, 3)
        expected_slice = np.array([0.59450, 0.64078, 0.55509, 0.51229, 0.69640, 0.36960, 0.59296, 0.60801, 0.49332])
116

117
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
118

119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
@slow
@require_torch_gpu
class LDMTextToImagePipelineSlowTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, dtype=torch.float32, seed=0):
        generator = torch.Generator(device=device).manual_seed(seed)
        latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs

    def test_ldm_default_ddim(self):
        pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
149
150

        assert image.shape == (1, 256, 256, 3)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        expected_slice = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878])
        max_diff = np.abs(expected_slice - image_slice).max()
        assert max_diff < 1e-3


@nightly
@require_torch_gpu
class LDMTextToImagePipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, dtype=torch.float32, seed=0):
        generator = torch.Generator(device=device).manual_seed(seed)
        latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs

    def test_ldm_default_ddim(self):
        pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3