autoencoder_kl_cogvideox.py 60.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from typing import Dict, Optional, Tuple, Union
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders.single_file_model import FromOriginalModelMixin
from ...utils import logging
from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..downsampling import CogVideoXDownsample3D
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from ..upsampling import CogVideoXUpsample3D
from .vae import DecoderOutput, DiagonalGaussianDistribution


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class CogVideoXSafeConv3d(nn.Conv3d):
39
    r"""
40
41
42
43
    A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model.
    """

    def forward(self, input: torch.Tensor) -> torch.Tensor:
44
45
46
        memory_count = (
            (input.shape[0] * input.shape[1] * input.shape[2] * input.shape[3] * input.shape[4]) * 2 / 1024**3
        )
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

        # Set to 2GB, suitable for CuDNN
        if memory_count > 2:
            kernel_size = self.kernel_size[0]
            part_num = int(memory_count / 2) + 1
            input_chunks = torch.chunk(input, part_num, dim=2)

            if kernel_size > 1:
                input_chunks = [input_chunks[0]] + [
                    torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2)
                    for i in range(1, len(input_chunks))
                ]

            output_chunks = []
            for input_chunk in input_chunks:
                output_chunks.append(super().forward(input_chunk))
            output = torch.cat(output_chunks, dim=2)
            return output
        else:
            return super().forward(input)


class CogVideoXCausalConv3d(nn.Module):
    r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model.

    Args:
73
74
75
76
77
78
        in_channels (`int`): Number of channels in the input tensor.
        out_channels (`int`): Number of output channels produced by the convolution.
        kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel.
        stride (`int`, defaults to `1`): Stride of the convolution.
        dilation (`int`, defaults to `1`): Dilation rate of the convolution.
        pad_mode (`str`, defaults to `"constant"`): Padding mode.
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int, int]],
        stride: int = 1,
        dilation: int = 1,
        pad_mode: str = "constant",
    ):
        super().__init__()

        if isinstance(kernel_size, int):
            kernel_size = (kernel_size,) * 3

        time_kernel_size, height_kernel_size, width_kernel_size = kernel_size

Aryan's avatar
Aryan committed
97
98
99
100
101
        # TODO(aryan): configure calculation based on stride and dilation in the future.
        # Since CogVideoX does not use it, it is currently tailored to "just work" with Mochi
        time_pad = time_kernel_size - 1
        height_pad = (height_kernel_size - 1) // 2
        width_pad = (width_kernel_size - 1) // 2
102

Aryan's avatar
Aryan committed
103
        self.pad_mode = pad_mode
104
105
106
107
108
109
110
111
        self.height_pad = height_pad
        self.width_pad = width_pad
        self.time_pad = time_pad
        self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0)

        self.temporal_dim = 2
        self.time_kernel_size = time_kernel_size

Aryan's avatar
Aryan committed
112
        stride = stride if isinstance(stride, tuple) else (stride, 1, 1)
113
114
115
116
117
118
119
120
121
        dilation = (dilation, 1, 1)
        self.conv = CogVideoXSafeConv3d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            dilation=dilation,
        )

122
123
124
    def fake_context_parallel_forward(
        self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
Aryan's avatar
Aryan committed
125
126
127
128
129
130
131
        if self.pad_mode == "replicate":
            inputs = F.pad(inputs, self.time_causal_padding, mode="replicate")
        else:
            kernel_size = self.time_kernel_size
            if kernel_size > 1:
                cached_inputs = [conv_cache] if conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1)
                inputs = torch.cat(cached_inputs + [inputs], dim=2)
132
133
        return inputs

134
135
    def forward(self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None) -> torch.Tensor:
        inputs = self.fake_context_parallel_forward(inputs, conv_cache)
136

Aryan's avatar
Aryan committed
137
138
139
140
141
142
        if self.pad_mode == "replicate":
            conv_cache = None
        else:
            padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad)
            conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone()
            inputs = F.pad(inputs, padding_2d, mode="constant", value=0)
143

144
        output = self.conv(inputs)
145
        return output, conv_cache
146
147
148
149
150
151
152
153
154
155
156
157
158
159


class CogVideoXSpatialNorm3D(nn.Module):
    r"""
    Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. This implementation is specific
    to 3D-video like data.

    CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model.

    Args:
        f_channels (`int`):
            The number of channels for input to group normalization layer, and output of the spatial norm layer.
        zq_channels (`int`):
            The number of channels for the quantized vector as described in the paper.
160
161
        groups (`int`):
            Number of groups to separate the channels into for group normalization.
162
163
164
165
166
167
168
169
170
171
172
173
174
    """

    def __init__(
        self,
        f_channels: int,
        zq_channels: int,
        groups: int = 32,
    ):
        super().__init__()
        self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True)
        self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
        self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)

175
176
177
178
179
180
    def forward(
        self, f: torch.Tensor, zq: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
    ) -> torch.Tensor:
        new_conv_cache = {}
        conv_cache = conv_cache or {}

181
182
183
184
185
186
187
188
189
190
        if f.shape[2] > 1 and f.shape[2] % 2 == 1:
            f_first, f_rest = f[:, :, :1], f[:, :, 1:]
            f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:]
            z_first, z_rest = zq[:, :, :1], zq[:, :, 1:]
            z_first = F.interpolate(z_first, size=f_first_size)
            z_rest = F.interpolate(z_rest, size=f_rest_size)
            zq = torch.cat([z_first, z_rest], dim=2)
        else:
            zq = F.interpolate(zq, size=f.shape[-3:])

191
192
193
        conv_y, new_conv_cache["conv_y"] = self.conv_y(zq, conv_cache=conv_cache.get("conv_y"))
        conv_b, new_conv_cache["conv_b"] = self.conv_b(zq, conv_cache=conv_cache.get("conv_b"))

194
        norm_f = self.norm_layer(f)
195
196
        new_f = norm_f * conv_y + conv_b
        return new_f, new_conv_cache
197
198
199
200
201
202
203


class CogVideoXResnetBlock3D(nn.Module):
    r"""
    A 3D ResNet block used in the CogVideoX model.

    Args:
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        in_channels (`int`):
            Number of input channels.
        out_channels (`int`, *optional*):
            Number of output channels. If None, defaults to `in_channels`.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        temb_channels (`int`, defaults to `512`):
            Number of time embedding channels.
        groups (`int`, defaults to `32`):
            Number of groups to separate the channels into for group normalization.
        eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        non_linearity (`str`, defaults to `"swish"`):
            Activation function to use.
        conv_shortcut (bool, defaults to `False`):
            Whether or not to use a convolution shortcut.
        spatial_norm_dim (`int`, *optional*):
            The dimension to use for spatial norm if it is to be used instead of group norm.
        pad_mode (str, defaults to `"first"`):
            Padding mode.
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: Optional[int] = None,
        dropout: float = 0.0,
        temb_channels: int = 512,
        groups: int = 32,
        eps: float = 1e-6,
        non_linearity: str = "swish",
        conv_shortcut: bool = False,
        spatial_norm_dim: Optional[int] = None,
        pad_mode: str = "first",
    ):
        super().__init__()

        out_channels = out_channels or in_channels

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.nonlinearity = get_activation(non_linearity)
        self.use_conv_shortcut = conv_shortcut
247
        self.spatial_norm_dim = spatial_norm_dim
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

        if spatial_norm_dim is None:
            self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps)
            self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps)
        else:
            self.norm1 = CogVideoXSpatialNorm3D(
                f_channels=in_channels,
                zq_channels=spatial_norm_dim,
                groups=groups,
            )
            self.norm2 = CogVideoXSpatialNorm3D(
                f_channels=out_channels,
                zq_channels=spatial_norm_dim,
                groups=groups,
            )

        self.conv1 = CogVideoXCausalConv3d(
            in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
        )

        if temb_channels > 0:
            self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels)

        self.dropout = nn.Dropout(dropout)
        self.conv2 = CogVideoXCausalConv3d(
            in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
        )

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = CogVideoXCausalConv3d(
                    in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
                )
            else:
                self.conv_shortcut = CogVideoXSafeConv3d(
                    in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0
                )

    def forward(
        self,
        inputs: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        zq: Optional[torch.Tensor] = None,
291
        conv_cache: Optional[Dict[str, torch.Tensor]] = None,
292
    ) -> torch.Tensor:
293
294
295
        new_conv_cache = {}
        conv_cache = conv_cache or {}

296
297
298
        hidden_states = inputs

        if zq is not None:
299
            hidden_states, new_conv_cache["norm1"] = self.norm1(hidden_states, zq, conv_cache=conv_cache.get("norm1"))
300
301
302
303
        else:
            hidden_states = self.norm1(hidden_states)

        hidden_states = self.nonlinearity(hidden_states)
304
        hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1"))
305
306
307
308
309

        if temb is not None:
            hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None]

        if zq is not None:
310
            hidden_states, new_conv_cache["norm2"] = self.norm2(hidden_states, zq, conv_cache=conv_cache.get("norm2"))
311
312
313
314
315
        else:
            hidden_states = self.norm2(hidden_states)

        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.dropout(hidden_states)
316
        hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2"))
317
318

        if self.in_channels != self.out_channels:
319
320
321
322
323
324
            if self.use_conv_shortcut:
                inputs, new_conv_cache["conv_shortcut"] = self.conv_shortcut(
                    inputs, conv_cache=conv_cache.get("conv_shortcut")
                )
            else:
                inputs = self.conv_shortcut(inputs)
325
326

        hidden_states = hidden_states + inputs
327
        return hidden_states, new_conv_cache
328
329
330
331
332
333
334


class CogVideoXDownBlock3D(nn.Module):
    r"""
    A downsampling block used in the CogVideoX model.

    Args:
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        in_channels (`int`):
            Number of input channels.
        out_channels (`int`, *optional*):
            Number of output channels. If None, defaults to `in_channels`.
        temb_channels (`int`, defaults to `512`):
            Number of time embedding channels.
        num_layers (`int`, defaults to `1`):
            Number of resnet layers.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        resnet_eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        resnet_act_fn (`str`, defaults to `"swish"`):
            Activation function to use.
        resnet_groups (`int`, defaults to `32`):
            Number of groups to separate the channels into for group normalization.
        add_downsample (`bool`, defaults to `True`):
            Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
        compress_time (`bool`, defaults to `False`):
            Whether or not to downsample across temporal dimension.
        pad_mode (str, defaults to `"first"`):
            Padding mode.
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    """

    _supports_gradient_checkpointing = True

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        add_downsample: bool = True,
        downsample_padding: int = 0,
        compress_time: bool = False,
        pad_mode: str = "first",
    ):
        super().__init__()

        resnets = []
        for i in range(num_layers):
            in_channel = in_channels if i == 0 else out_channels
            resnets.append(
                CogVideoXResnetBlock3D(
                    in_channels=in_channel,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=resnet_groups,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    pad_mode=pad_mode,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.downsamplers = None

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    CogVideoXDownsample3D(
                        out_channels, out_channels, padding=downsample_padding, compress_time=compress_time
                    )
                ]
            )

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        zq: Optional[torch.Tensor] = None,
413
        conv_cache: Optional[Dict[str, torch.Tensor]] = None,
414
    ) -> torch.Tensor:
415
416
417
418
419
420
421
422
        r"""Forward method of the `CogVideoXDownBlock3D` class."""

        new_conv_cache = {}
        conv_cache = conv_cache or {}

        for i, resnet in enumerate(self.resnets):
            conv_cache_key = f"resnet_{i}"

423
            if torch.is_grad_enabled() and self.gradient_checkpointing:
424
425
426
427
428
429
430

                def create_custom_forward(module):
                    def create_forward(*inputs):
                        return module(*inputs)

                    return create_forward

431
432
433
434
435
                hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    zq,
436
                    conv_cache.get(conv_cache_key),
437
438
                )
            else:
439
440
441
                hidden_states, new_conv_cache[conv_cache_key] = resnet(
                    hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
                )
442
443
444
445
446

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

447
        return hidden_states, new_conv_cache
448
449
450
451
452
453
454


class CogVideoXMidBlock3D(nn.Module):
    r"""
    A middle block used in the CogVideoX model.

    Args:
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        in_channels (`int`):
            Number of input channels.
        temb_channels (`int`, defaults to `512`):
            Number of time embedding channels.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        num_layers (`int`, defaults to `1`):
            Number of resnet layers.
        resnet_eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        resnet_act_fn (`str`, defaults to `"swish"`):
            Activation function to use.
        resnet_groups (`int`, defaults to `32`):
            Number of groups to separate the channels into for group normalization.
        spatial_norm_dim (`int`, *optional*):
            The dimension to use for spatial norm if it is to be used instead of group norm.
        pad_mode (str, defaults to `"first"`):
            Padding mode.
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    """

    _supports_gradient_checkpointing = True

    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        spatial_norm_dim: Optional[int] = None,
        pad_mode: str = "first",
    ):
        super().__init__()

        resnets = []
        for _ in range(num_layers):
            resnets.append(
                CogVideoXResnetBlock3D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=resnet_groups,
                    eps=resnet_eps,
                    spatial_norm_dim=spatial_norm_dim,
                    non_linearity=resnet_act_fn,
                    pad_mode=pad_mode,
                )
            )
        self.resnets = nn.ModuleList(resnets)

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        zq: Optional[torch.Tensor] = None,
515
        conv_cache: Optional[Dict[str, torch.Tensor]] = None,
516
    ) -> torch.Tensor:
517
518
519
520
521
522
523
524
        r"""Forward method of the `CogVideoXMidBlock3D` class."""

        new_conv_cache = {}
        conv_cache = conv_cache or {}

        for i, resnet in enumerate(self.resnets):
            conv_cache_key = f"resnet_{i}"

525
            if torch.is_grad_enabled() and self.gradient_checkpointing:
526
527
528
529
530
531
532

                def create_custom_forward(module):
                    def create_forward(*inputs):
                        return module(*inputs)

                    return create_forward

533
                hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
534
                    create_custom_forward(resnet), hidden_states, temb, zq, conv_cache.get(conv_cache_key)
535
536
                )
            else:
537
538
539
                hidden_states, new_conv_cache[conv_cache_key] = resnet(
                    hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
                )
540

541
        return hidden_states, new_conv_cache
542
543
544
545
546
547
548


class CogVideoXUpBlock3D(nn.Module):
    r"""
    An upsampling block used in the CogVideoX model.

    Args:
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        in_channels (`int`):
            Number of input channels.
        out_channels (`int`, *optional*):
            Number of output channels. If None, defaults to `in_channels`.
        temb_channels (`int`, defaults to `512`):
            Number of time embedding channels.
        dropout (`float`, defaults to `0.0`):
            Dropout rate.
        num_layers (`int`, defaults to `1`):
            Number of resnet layers.
        resnet_eps (`float`, defaults to `1e-6`):
            Epsilon value for normalization layers.
        resnet_act_fn (`str`, defaults to `"swish"`):
            Activation function to use.
        resnet_groups (`int`, defaults to `32`):
            Number of groups to separate the channels into for group normalization.
        spatial_norm_dim (`int`, defaults to `16`):
            The dimension to use for spatial norm if it is to be used instead of group norm.
        add_upsample (`bool`, defaults to `True`):
            Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension.
        compress_time (`bool`, defaults to `False`):
            Whether or not to downsample across temporal dimension.
        pad_mode (str, defaults to `"first"`):
            Padding mode.
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        spatial_norm_dim: int = 16,
        add_upsample: bool = True,
        upsample_padding: int = 1,
        compress_time: bool = False,
        pad_mode: str = "first",
    ):
        super().__init__()

        resnets = []
        for i in range(num_layers):
            in_channel = in_channels if i == 0 else out_channels
            resnets.append(
                CogVideoXResnetBlock3D(
                    in_channels=in_channel,
                    out_channels=out_channels,
                    dropout=dropout,
                    temb_channels=temb_channels,
                    groups=resnet_groups,
                    eps=resnet_eps,
                    non_linearity=resnet_act_fn,
                    spatial_norm_dim=spatial_norm_dim,
                    pad_mode=pad_mode,
                )
            )

        self.resnets = nn.ModuleList(resnets)
        self.upsamplers = None

        if add_upsample:
            self.upsamplers = nn.ModuleList(
                [
                    CogVideoXUpsample3D(
                        out_channels, out_channels, padding=upsample_padding, compress_time=compress_time
                    )
                ]
            )

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        zq: Optional[torch.Tensor] = None,
629
        conv_cache: Optional[Dict[str, torch.Tensor]] = None,
630
631
    ) -> torch.Tensor:
        r"""Forward method of the `CogVideoXUpBlock3D` class."""
632
633
634
635
636
637
638

        new_conv_cache = {}
        conv_cache = conv_cache or {}

        for i, resnet in enumerate(self.resnets):
            conv_cache_key = f"resnet_{i}"

639
            if torch.is_grad_enabled() and self.gradient_checkpointing:
640
641
642
643
644
645
646

                def create_custom_forward(module):
                    def create_forward(*inputs):
                        return module(*inputs)

                    return create_forward

647
648
649
650
651
                hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    zq,
652
                    conv_cache.get(conv_cache_key),
653
654
                )
            else:
655
656
657
                hidden_states, new_conv_cache[conv_cache_key] = resnet(
                    hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
                )
658
659
660
661
662

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

663
        return hidden_states, new_conv_cache
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679


class CogVideoXEncoder3D(nn.Module):
    r"""
    The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
            options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
680
681
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
    """

    _supports_gradient_checkpointing = True

    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 16,
        down_block_types: Tuple[str, ...] = (
            "CogVideoXDownBlock3D",
            "CogVideoXDownBlock3D",
            "CogVideoXDownBlock3D",
            "CogVideoXDownBlock3D",
        ),
        block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
        layers_per_block: int = 3,
        act_fn: str = "silu",
        norm_eps: float = 1e-6,
        norm_num_groups: int = 32,
        dropout: float = 0.0,
        pad_mode: str = "first",
        temporal_compression_ratio: float = 4,
    ):
        super().__init__()

        # log2 of temporal_compress_times
        temporal_compress_level = int(np.log2(temporal_compression_ratio))

        self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode)
        self.down_blocks = nn.ModuleList([])

        # down blocks
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            compress_time = i < temporal_compress_level

            if down_block_type == "CogVideoXDownBlock3D":
                down_block = CogVideoXDownBlock3D(
                    in_channels=input_channel,
                    out_channels=output_channel,
                    temb_channels=0,
                    dropout=dropout,
                    num_layers=layers_per_block,
                    resnet_eps=norm_eps,
                    resnet_act_fn=act_fn,
                    resnet_groups=norm_num_groups,
                    add_downsample=not is_final_block,
                    compress_time=compress_time,
                )
            else:
                raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`")

            self.down_blocks.append(down_block)

        # mid block
        self.mid_block = CogVideoXMidBlock3D(
            in_channels=block_out_channels[-1],
            temb_channels=0,
            dropout=dropout,
            num_layers=2,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            resnet_groups=norm_num_groups,
            pad_mode=pad_mode,
        )

        self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = CogVideoXCausalConv3d(
            block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode
        )

        self.gradient_checkpointing = False

763
764
765
766
767
768
    def forward(
        self,
        sample: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        conv_cache: Optional[Dict[str, torch.Tensor]] = None,
    ) -> torch.Tensor:
769
        r"""The forward method of the `CogVideoXEncoder3D` class."""
770
771
772
773
774

        new_conv_cache = {}
        conv_cache = conv_cache or {}

        hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in"))
775

776
        if torch.is_grad_enabled() and self.gradient_checkpointing:
777
778
779
780
781
782
783
784

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # 1. Down
785
786
787
788
789
790
791
            for i, down_block in enumerate(self.down_blocks):
                conv_cache_key = f"down_block_{i}"
                hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(down_block),
                    hidden_states,
                    temb,
                    None,
792
                    conv_cache.get(conv_cache_key),
793
794
795
                )

            # 2. Mid
796
797
798
799
800
            hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint(
                create_custom_forward(self.mid_block),
                hidden_states,
                temb,
                None,
801
                conv_cache.get("mid_block"),
802
803
804
            )
        else:
            # 1. Down
805
806
807
            for i, down_block in enumerate(self.down_blocks):
                conv_cache_key = f"down_block_{i}"
                hidden_states, new_conv_cache[conv_cache_key] = down_block(
808
                    hidden_states, temb, None, conv_cache.get(conv_cache_key)
809
                )
810
811

            # 2. Mid
812
813
814
            hidden_states, new_conv_cache["mid_block"] = self.mid_block(
                hidden_states, temb, None, conv_cache=conv_cache.get("mid_block")
            )
815
816
817
818

        # 3. Post-process
        hidden_states = self.norm_out(hidden_states)
        hidden_states = self.conv_act(hidden_states)
819
820
821
822

        hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out"))

        return hidden_states, new_conv_cache
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838


class CogVideoXDecoder3D(nn.Module):
    r"""
    The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output
    sample.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
839
840
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
    """

    _supports_gradient_checkpointing = True

    def __init__(
        self,
        in_channels: int = 16,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = (
            "CogVideoXUpBlock3D",
            "CogVideoXUpBlock3D",
            "CogVideoXUpBlock3D",
            "CogVideoXUpBlock3D",
        ),
        block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
        layers_per_block: int = 3,
        act_fn: str = "silu",
        norm_eps: float = 1e-6,
        norm_num_groups: int = 32,
        dropout: float = 0.0,
        pad_mode: str = "first",
        temporal_compression_ratio: float = 4,
    ):
        super().__init__()

        reversed_block_out_channels = list(reversed(block_out_channels))

        self.conv_in = CogVideoXCausalConv3d(
            in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode
        )

        # mid block
        self.mid_block = CogVideoXMidBlock3D(
            in_channels=reversed_block_out_channels[0],
            temb_channels=0,
            num_layers=2,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            resnet_groups=norm_num_groups,
            spatial_norm_dim=in_channels,
            pad_mode=pad_mode,
        )

        # up blocks
        self.up_blocks = nn.ModuleList([])

        output_channel = reversed_block_out_channels[0]
        temporal_compress_level = int(np.log2(temporal_compression_ratio))

        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            compress_time = i < temporal_compress_level

            if up_block_type == "CogVideoXUpBlock3D":
                up_block = CogVideoXUpBlock3D(
                    in_channels=prev_output_channel,
                    out_channels=output_channel,
                    temb_channels=0,
                    dropout=dropout,
                    num_layers=layers_per_block + 1,
                    resnet_eps=norm_eps,
                    resnet_act_fn=act_fn,
                    resnet_groups=norm_num_groups,
                    spatial_norm_dim=in_channels,
                    add_upsample=not is_final_block,
                    compress_time=compress_time,
                    pad_mode=pad_mode,
                )
                prev_output_channel = output_channel
            else:
                raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`")

            self.up_blocks.append(up_block)

        self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups)
        self.conv_act = nn.SiLU()
        self.conv_out = CogVideoXCausalConv3d(
            reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode
        )

        self.gradient_checkpointing = False

929
930
931
932
933
934
    def forward(
        self,
        sample: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
        conv_cache: Optional[Dict[str, torch.Tensor]] = None,
    ) -> torch.Tensor:
935
        r"""The forward method of the `CogVideoXDecoder3D` class."""
936
937
938
939
940

        new_conv_cache = {}
        conv_cache = conv_cache or {}

        hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in"))
941

942
        if torch.is_grad_enabled() and self.gradient_checkpointing:
943
944
945
946
947
948
949
950

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # 1. Mid
951
952
953
954
955
            hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint(
                create_custom_forward(self.mid_block),
                hidden_states,
                temb,
                sample,
956
                conv_cache.get("mid_block"),
957
958
959
            )

            # 2. Up
960
961
962
963
964
965
966
            for i, up_block in enumerate(self.up_blocks):
                conv_cache_key = f"up_block_{i}"
                hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(up_block),
                    hidden_states,
                    temb,
                    sample,
967
                    conv_cache.get(conv_cache_key),
968
969
970
                )
        else:
            # 1. Mid
971
972
973
            hidden_states, new_conv_cache["mid_block"] = self.mid_block(
                hidden_states, temb, sample, conv_cache=conv_cache.get("mid_block")
            )
974
975

            # 2. Up
976
977
978
979
980
            for i, up_block in enumerate(self.up_blocks):
                conv_cache_key = f"up_block_{i}"
                hidden_states, new_conv_cache[conv_cache_key] = up_block(
                    hidden_states, temb, sample, conv_cache=conv_cache.get(conv_cache_key)
                )
981
982

        # 3. Post-process
983
984
985
        hidden_states, new_conv_cache["norm_out"] = self.norm_out(
            hidden_states, sample, conv_cache=conv_cache.get("norm_out")
        )
986
        hidden_states = self.conv_act(hidden_states)
987
988
989
        hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out"))

        return hidden_states, new_conv_cache
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010


class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
    r"""
    A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
    [CogVideoX](https://github.com/THUDM/CogVideo).

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).

    Parameters:
        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            Tuple of downsample block types.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            Tuple of upsample block types.
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
            Tuple of block output channels.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        sample_size (`int`, *optional*, defaults to `32`): Sample input size.
zR's avatar
zR committed
1011
        scaling_factor (`float`, *optional*, defaults to `1.15258426`):
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
            The component-wise standard deviation of the trained latent space computed using the first batch of the
            training set. This is used to scale the latent space to have unit variance when training the diffusion
            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
        force_upcast (`bool`, *optional*, default to `True`):
            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
            can be fine-tuned / trained to a lower range without loosing too much precision in which case
            `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["CogVideoXResnetBlock3D"]

    @register_to_config
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = (
            "CogVideoXDownBlock3D",
            "CogVideoXDownBlock3D",
            "CogVideoXDownBlock3D",
            "CogVideoXDownBlock3D",
        ),
        up_block_types: Tuple[str] = (
            "CogVideoXUpBlock3D",
            "CogVideoXUpBlock3D",
            "CogVideoXUpBlock3D",
            "CogVideoXUpBlock3D",
        ),
        block_out_channels: Tuple[int] = (128, 256, 256, 512),
        latent_channels: int = 16,
        layers_per_block: int = 3,
        act_fn: str = "silu",
        norm_eps: float = 1e-6,
        norm_num_groups: int = 32,
        temporal_compression_ratio: float = 4,
1051
1052
        sample_height: int = 480,
        sample_width: int = 720,
1053
1054
1055
1056
1057
1058
1059
        scaling_factor: float = 1.15258426,
        shift_factor: Optional[float] = None,
        latents_mean: Optional[Tuple[float]] = None,
        latents_std: Optional[Tuple[float]] = None,
        force_upcast: float = True,
        use_quant_conv: bool = False,
        use_post_quant_conv: bool = False,
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
1060
        invert_scale_latents: bool = False,
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
    ):
        super().__init__()

        self.encoder = CogVideoXEncoder3D(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_eps=norm_eps,
            norm_num_groups=norm_num_groups,
            temporal_compression_ratio=temporal_compression_ratio,
        )
        self.decoder = CogVideoXDecoder3D(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            norm_eps=norm_eps,
            norm_num_groups=norm_num_groups,
            temporal_compression_ratio=temporal_compression_ratio,
        )
        self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None
        self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None

        self.use_slicing = False
        self.use_tiling = False

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        # Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not
        # recommended because the temporal parts of the VAE, here, are tricky to understand.
        # If you decode X latent frames together, the number of output frames is:
        #     (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames
        #
        # Example with num_latent_frames_batch_size = 2:
        #     - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together
        #         => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
        #         => 6 * 8 = 48 frames
        #     - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together
        #         => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) +
        #            ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
        #         => 1 * 9 + 5 * 8 = 49 frames
        # It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that
        # setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different
        # number of temporal frames.
        self.num_latent_frames_batch_size = 2
1109
        self.num_sample_frames_batch_size = 8
1110
1111
1112
1113
1114
1115

        # We make the minimum height and width of sample for tiling half that of the generally supported
        self.tile_sample_min_height = sample_height // 2
        self.tile_sample_min_width = sample_width // 2
        self.tile_latent_min_height = int(
            self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
1116
        )
1117
1118
1119
1120
1121
1122
1123
        self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))

        # These are experimental overlap factors that were chosen based on experimentation and seem to work best for
        # 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX
        # and so the tiling implementation has only been tested on those specific resolutions.
        self.tile_overlap_factor_height = 1 / 6
        self.tile_overlap_factor_width = 1 / 5
1124
1125
1126
1127
1128

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)):
            module.gradient_checkpointing = value

1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
    def enable_tiling(
        self,
        tile_sample_min_height: Optional[int] = None,
        tile_sample_min_width: Optional[int] = None,
        tile_overlap_factor_height: Optional[float] = None,
        tile_overlap_factor_width: Optional[float] = None,
    ) -> None:
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.

        Args:
            tile_sample_min_height (`int`, *optional*):
                The minimum height required for a sample to be separated into tiles across the height dimension.
            tile_sample_min_width (`int`, *optional*):
                The minimum width required for a sample to be separated into tiles across the width dimension.
            tile_overlap_factor_height (`int`, *optional*):
                The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
                no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher
                value might cause more tiles to be processed leading to slow down of the decoding process.
            tile_overlap_factor_width (`int`, *optional*):
                The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there
                are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher
                value might cause more tiles to be processed leading to slow down of the decoding process.
        """
        self.use_tiling = True
        self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
        self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
        self.tile_latent_min_height = int(
            self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
        )
        self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
        self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height
        self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width

    def disable_tiling(self) -> None:
        r"""
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_tiling = False

    def enable_slicing(self) -> None:
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self) -> None:
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

1186
1187
1188
1189
1190
1191
1192
    def _encode(self, x: torch.Tensor) -> torch.Tensor:
        batch_size, num_channels, num_frames, height, width = x.shape

        if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
            return self.tiled_encode(x)

        frame_batch_size = self.num_sample_frames_batch_size
1193
        # Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k.
1194
1195
        # As the extra single frame is handled inside the loop, it is not required to round up here.
        num_batches = max(num_frames // frame_batch_size, 1)
1196
        conv_cache = None
1197
        enc = []
1198

1199
        for i in range(num_batches):
1200
1201
1202
1203
            remaining_frames = num_frames % frame_batch_size
            start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
            end_frame = frame_batch_size * (i + 1) + remaining_frames
            x_intermediate = x[:, :, start_frame:end_frame]
1204
            x_intermediate, conv_cache = self.encoder(x_intermediate, conv_cache=conv_cache)
1205
1206
1207
1208
1209
1210
1211
            if self.quant_conv is not None:
                x_intermediate = self.quant_conv(x_intermediate)
            enc.append(x_intermediate)

        enc = torch.cat(enc, dim=2)
        return enc

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
    @apply_forward_hook
    def encode(
        self, x: torch.Tensor, return_dict: bool = True
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """
        Encode a batch of images into latents.

        Args:
            x (`torch.Tensor`): Input batch of images.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.

        Returns:
1225
                The latent representations of the encoded videos. If `return_dict` is True, a
1226
1227
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
        """
1228
1229
1230
1231
1232
1233
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = self._encode(x)

1234
        posterior = DiagonalGaussianDistribution(h)
1235

1236
1237
1238
1239
        if not return_dict:
            return (posterior,)
        return AutoencoderKLOutput(latent_dist=posterior)

1240
1241
1242
1243
1244
1245
1246
    def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
        batch_size, num_channels, num_frames, height, width = z.shape

        if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
            return self.tiled_decode(z, return_dict=return_dict)

        frame_batch_size = self.num_latent_frames_batch_size
1247
        num_batches = max(num_frames // frame_batch_size, 1)
1248
        conv_cache = None
1249
        dec = []
1250

1251
        for i in range(num_batches):
1252
1253
1254
1255
1256
1257
            remaining_frames = num_frames % frame_batch_size
            start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
            end_frame = frame_batch_size * (i + 1) + remaining_frames
            z_intermediate = z[:, :, start_frame:end_frame]
            if self.post_quant_conv is not None:
                z_intermediate = self.post_quant_conv(z_intermediate)
1258
            z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache)
1259
1260
1261
1262
1263
1264
1265
1266
1267
            dec.append(z_intermediate)

        dec = torch.cat(dec, dim=2)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

1268
    @apply_forward_hook
1269
    def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
        """
        Decode a batch of images.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
1282
1283
1284
1285
1286
1287
        """
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = self._decode(z).sample
1288

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
        if not return_dict:
            return (decoded,)
        return DecoderOutput(sample=decoded)

    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
                y / blend_extent
            )
        return b

    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[4], b.shape[4], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
                x / blend_extent
            )
        return b

1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
    def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
        r"""Encode a batch of images using a tiled encoder.

        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
        output, but they should be much less noticeable.

        Args:
            x (`torch.Tensor`): Input batch of videos.

        Returns:
            `torch.Tensor`:
                The latent representation of the encoded videos.
        """
        # For a rough memory estimate, take a look at the `tiled_decode` method.
        batch_size, num_channels, num_frames, height, width = x.shape

        overlap_height = int(self.tile_sample_min_height * (1 - self.tile_overlap_factor_height))
        overlap_width = int(self.tile_sample_min_width * (1 - self.tile_overlap_factor_width))
        blend_extent_height = int(self.tile_latent_min_height * self.tile_overlap_factor_height)
        blend_extent_width = int(self.tile_latent_min_width * self.tile_overlap_factor_width)
        row_limit_height = self.tile_latent_min_height - blend_extent_height
        row_limit_width = self.tile_latent_min_width - blend_extent_width
        frame_batch_size = self.num_sample_frames_batch_size

        # Split x into overlapping tiles and encode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, overlap_height):
            row = []
            for j in range(0, width, overlap_width):
1342
                # Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k.
1343
1344
                # As the extra single frame is handled inside the loop, it is not required to round up here.
                num_batches = max(num_frames // frame_batch_size, 1)
1345
                conv_cache = None
1346
                time = []
1347

1348
                for k in range(num_batches):
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
                    remaining_frames = num_frames % frame_batch_size
                    start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
                    end_frame = frame_batch_size * (k + 1) + remaining_frames
                    tile = x[
                        :,
                        :,
                        start_frame:end_frame,
                        i : i + self.tile_sample_min_height,
                        j : j + self.tile_sample_min_width,
                    ]
1359
                    tile, conv_cache = self.encoder(tile, conv_cache=conv_cache)
1360
1361
1362
                    if self.quant_conv is not None:
                        tile = self.quant_conv(tile)
                    time.append(tile)
1363

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
                row.append(torch.cat(time, dim=2))
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent_width)
                result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
            result_rows.append(torch.cat(result_row, dim=4))

        enc = torch.cat(result_rows, dim=3)
        return enc

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
        r"""
        Decode a batch of images using a tiled decoder.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
1396
        """
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
        # Rough memory assessment:
        #   - In CogVideoX-2B, there are a total of 24 CausalConv3d layers.
        #   - The biggest intermediate dimensions are: [1, 128, 9, 480, 720].
        #   - Assume fp16 (2 bytes per value).
        # Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB
        #
        # Memory assessment when using tiling:
        #   - Assume everything as above but now HxW is 240x360 by tiling in half
        # Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB

        batch_size, num_channels, num_frames, height, width = z.shape

        overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height))
        overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width))
        blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height)
        blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width)
        row_limit_height = self.tile_sample_min_height - blend_extent_height
        row_limit_width = self.tile_sample_min_width - blend_extent_width
        frame_batch_size = self.num_latent_frames_batch_size

        # Split z into overlapping tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, overlap_height):
            row = []
            for j in range(0, width, overlap_width):
1423
                num_batches = max(num_frames // frame_batch_size, 1)
1424
                conv_cache = None
1425
                time = []
1426

1427
                for k in range(num_batches):
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
                    remaining_frames = num_frames % frame_batch_size
                    start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
                    end_frame = frame_batch_size * (k + 1) + remaining_frames
                    tile = z[
                        :,
                        :,
                        start_frame:end_frame,
                        i : i + self.tile_latent_min_height,
                        j : j + self.tile_latent_min_width,
                    ]
                    if self.post_quant_conv is not None:
                        tile = self.post_quant_conv(tile)
1440
                    tile, conv_cache = self.decoder(tile, conv_cache=conv_cache)
1441
                    time.append(tile)
1442

1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
                row.append(torch.cat(time, dim=2))
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent_width)
                result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
            result_rows.append(torch.cat(result_row, dim=4))

        dec = torch.cat(result_rows, dim=3)

1461
1462
        if not return_dict:
            return (dec,)
1463

1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
        return DecoderOutput(sample=dec)

    def forward(
        self,
        sample: torch.Tensor,
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
    ) -> Union[torch.Tensor, torch.Tensor]:
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
1479
        dec = self.decode(z).sample
1480
1481
        if not return_dict:
            return (dec,)
1482
        return DecoderOutput(sample=dec)