scheduling_ddim.py 6.31 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

Patrick von Platen's avatar
Patrick von Platen committed
16
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
17
18

from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
19
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule
Patrick von Platen's avatar
Patrick von Platen committed
20
21


Patrick von Platen's avatar
Patrick von Platen committed
22
class DDIMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
27
28
29
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        clip_predicted_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
30
        tensor_format="np",
Patrick von Platen's avatar
Patrick von Platen committed
31
32
33
34
35
36
37
38
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )
Patrick von Platen's avatar
Patrick von Platen committed
39
        self.timesteps = int(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
        self.clip_image = clip_predicted_image

        if beta_schedule == "linear":
Patrick von Platen's avatar
Patrick von Platen committed
43
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
Patrick von Platen's avatar
Patrick von Platen committed
44
45
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
Patrick von Platen's avatar
Patrick von Platen committed
46
            self.betas = betas_for_alpha_bar(
Patrick von Platen's avatar
Patrick von Platen committed
47
48
49
50
51
52
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

    #        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
    # TODO(PVP) - check how much of these is actually necessary!
    # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
    # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
    #        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
    #        if variance_type == "fixed_small":
    #            log_variance = torch.log(variance.clamp(min=1e-20))
    #        elif variance_type == "fixed_large":
    #            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
    #
    #
    #        self.register_buffer("log_variance", log_variance.to(torch.float32))
Patrick von Platen's avatar
Patrick von Platen committed
71

anton-l's avatar
anton-l committed
72
73
74
75
76
77
78
79
80
    # def rescale_betas(self, num_timesteps):
    #     # GLIDE scaling
    #     if self.beta_schedule == "linear":
    #         scale = self.timesteps / num_timesteps
    #         self.betas = linear_beta_schedule(
    #             num_timesteps, beta_start=self.beta_start * scale, beta_end=self.beta_end * scale
    #         )
    #         self.alphas = 1.0 - self.betas
    #         self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
anton-l's avatar
anton-l committed
81

Patrick von Platen's avatar
Patrick von Platen committed
82
83
84
85
86
87
88
89
    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
Patrick von Platen's avatar
Patrick von Platen committed
90
            return self.one
Patrick von Platen's avatar
Patrick von Platen committed
91
92
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
    def get_orig_t(self, t, num_inference_steps):
        if t < 0:
            return -1
Patrick von Platen's avatar
Patrick von Platen committed
96
        return self.timesteps // num_inference_steps * t
Patrick von Platen's avatar
Patrick von Platen committed
97

Patrick von Platen's avatar
Patrick von Platen committed
98
    def get_variance(self, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
99
100
        orig_t = self.get_orig_t(t, num_inference_steps)
        orig_prev_t = self.get_orig_t(t - 1, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
101
102
103
104
105
106
107
108
109
110

        alpha_prod_t = self.get_alpha_prod(orig_t)
        alpha_prod_t_prev = self.get_alpha_prod(orig_prev_t)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

anton-l's avatar
anton-l committed
111
    def step(self, residual, image, t, num_inference_steps, eta, use_clipped_residual=False):
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
115
116
117
118
119
120
121
122
123
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"

        # 1. get actual t and t-1
Patrick von Platen's avatar
Patrick von Platen committed
124
125
        orig_t = self.get_orig_t(t, num_inference_steps)
        orig_prev_t = self.get_orig_t(t - 1, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
130
131
132
133

        # 2. compute alphas, betas
        alpha_prod_t = self.get_alpha_prod(orig_t)
        alpha_prod_t_prev = self.get_alpha_prod(orig_prev_t)
        beta_prod_t = 1 - alpha_prod_t

        # 3. compute predicted original image from predicted noise also called
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
134
        pred_original_image = (image - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
135
136
137

        # 4. Clip "predicted x_0"
        if self.clip_image:
Patrick von Platen's avatar
Patrick von Platen committed
138
            pred_original_image = self.clip(pred_original_image, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
139
140
141
142

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self.get_variance(t, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
143
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
144

anton-l's avatar
anton-l committed
145
146
147
148
        if use_clipped_residual:
            # the residual is always re-derived from the clipped x_0 in GLIDE
            residual = (image - alpha_prod_t ** (0.5) * pred_original_image) / beta_prod_t ** (0.5)

Patrick von Platen's avatar
Patrick von Platen committed
149
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
150
        pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * residual
Patrick von Platen's avatar
Patrick von Platen committed
151
152

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
153
        pred_prev_image = alpha_prod_t_prev ** (0.5) * pred_original_image + pred_image_direction
Patrick von Platen's avatar
Patrick von Platen committed
154
155
156
157

        return pred_prev_image

    def __len__(self):
Patrick von Platen's avatar
Patrick von Platen committed
158
        return self.timesteps