"vscode:/vscode.git/clone" did not exist on "250d6660531e1604e57d959a4188e20997bfe054"
scheduling_plms.py 14 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
17
import torch
anton-l's avatar
anton-l committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
from tqdm import tqdm
Patrick von Platen's avatar
Patrick von Platen committed
20
21
22
23
24

from ..configuration_utils import ConfigMixin
from .schedulers_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule


Patrick von Platen's avatar
Patrick von Platen committed
25
26
27
28
29
30
31
def noise_like(shape, device, repeat=False):
    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
    noise = lambda: torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()


def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
anton-l's avatar
anton-l committed
32
    if ddim_discr_method == "uniform":
Patrick von Platen's avatar
Patrick von Platen committed
33
34
        c = num_ddpm_timesteps // num_ddim_timesteps
        ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
anton-l's avatar
anton-l committed
35
36
    elif ddim_discr_method == "quad":
        ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2).astype(int)
Patrick von Platen's avatar
Patrick von Platen committed
37
38
39
40
41
42
43
    else:
        raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')

    # assert ddim_timesteps.shape[0] == num_ddim_timesteps
    # add one to get the final alpha values right (the ones from first scale to data during sampling)
    steps_out = ddim_timesteps + 1
    if verbose:
anton-l's avatar
anton-l committed
44
        print(f"Selected timesteps for ddim sampler: {steps_out}")
Patrick von Platen's avatar
Patrick von Platen committed
45
46
47
48
49
50
51
52
53
54
55
    return steps_out


def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
    # select alphas for computing the variance schedule
    alphas = alphacums[ddim_timesteps]
    alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())

    # according the the formula provided in https://arxiv.org/abs/2010.02502
    sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
    if verbose:
anton-l's avatar
anton-l committed
56
57
58
59
60
        print(f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}")
        print(
            f"For the chosen value of eta, which is {eta}, "
            f"this results in the following sigma_t schedule for ddim sampler {sigmas}"
        )
Patrick von Platen's avatar
Patrick von Platen committed
61
62
63
64
65
    return sigmas, alphas, alphas_prev


class PLMSSampler(object):
    def __init__(self, model, schedule="linear", **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
66
        super().__init__()
Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
70
71
72
73
74
75
76
        self.model = model
        self.ddpm_num_timesteps = model.num_timesteps
        self.schedule = schedule

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
            if attr.device != torch.device("cuda"):
                attr = attr.to(torch.device("cuda"))
        setattr(self, name, attr)

anton-l's avatar
anton-l committed
77
    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True):
Patrick von Platen's avatar
Patrick von Platen committed
78
        if ddim_eta != 0:
anton-l's avatar
anton-l committed
79
80
81
82
83
84
85
            raise ValueError("ddim_eta must be 0 for PLMS")
        self.ddim_timesteps = make_ddim_timesteps(
            ddim_discr_method=ddim_discretize,
            num_ddim_timesteps=ddim_num_steps,
            num_ddpm_timesteps=self.ddpm_num_timesteps,
            verbose=verbose,
        )
Patrick von Platen's avatar
Patrick von Platen committed
86
        alphas_cumprod = self.model.alphas_cumprod
anton-l's avatar
anton-l committed
87
        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, "alphas have to be defined for each timestep"
Patrick von Platen's avatar
Patrick von Platen committed
88
89
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)

anton-l's avatar
anton-l committed
90
91
92
        self.register_buffer("betas", to_torch(self.model.betas))
        self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
        self.register_buffer("alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev))
Patrick von Platen's avatar
Patrick von Platen committed
93
94

        # calculations for diffusion q(x_t | x_{t-1}) and others
anton-l's avatar
anton-l committed
95
96
97
98
99
        self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu())))
        self.register_buffer("sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())))
        self.register_buffer("log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu())))
        self.register_buffer("sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())))
        self.register_buffer("sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)))
Patrick von Platen's avatar
Patrick von Platen committed
100
101

        # ddim sampling parameters
anton-l's avatar
anton-l committed
102
103
104
105
106
107
108
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
            alphacums=alphas_cumprod.cpu(), ddim_timesteps=self.ddim_timesteps, eta=ddim_eta, verbose=verbose
        )
        self.register_buffer("ddim_sigmas", ddim_sigmas)
        self.register_buffer("ddim_alphas", ddim_alphas)
        self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
        self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
Patrick von Platen's avatar
Patrick von Platen committed
109
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
anton-l's avatar
anton-l committed
110
111
112
113
114
            (1 - self.alphas_cumprod_prev)
            / (1 - self.alphas_cumprod)
            * (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
        )
        self.register_buffer("ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps)
Patrick von Platen's avatar
Patrick von Platen committed
115
116

    @torch.no_grad()
anton-l's avatar
anton-l committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    def sample(
        self,
        S,
        batch_size,
        shape,
        conditioning=None,
        callback=None,
        normals_sequence=None,
        img_callback=None,
        quantize_x0=False,
        eta=0.0,
        mask=None,
        x0=None,
        temperature=1.0,
        noise_dropout=0.0,
        score_corrector=None,
        corrector_kwargs=None,
        verbose=True,
        x_T=None,
        log_every_t=100,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,
        # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
        **kwargs,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
142
143
144
145
146
147
148
149
150
151
152
153
154
        if conditioning is not None:
            if isinstance(conditioning, dict):
                cbs = conditioning[list(conditioning.keys())[0]].shape[0]
                if cbs != batch_size:
                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
            else:
                if conditioning.shape[0] != batch_size:
                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")

        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
        # sampling
        C, H, W = shape
        size = (batch_size, C, H, W)
anton-l's avatar
anton-l committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        print(f"Data shape for PLMS sampling is {size}")

        samples, intermediates = self.plms_sampling(
            conditioning,
            size,
            callback=callback,
            img_callback=img_callback,
            quantize_denoised=quantize_x0,
            mask=mask,
            x0=x0,
            ddim_use_original_steps=False,
            noise_dropout=noise_dropout,
            temperature=temperature,
            score_corrector=score_corrector,
            corrector_kwargs=corrector_kwargs,
            x_T=x_T,
            log_every_t=log_every_t,
            unconditional_guidance_scale=unconditional_guidance_scale,
            unconditional_conditioning=unconditional_conditioning,
        )
Patrick von Platen's avatar
Patrick von Platen committed
175
176
177
        return samples, intermediates

    @torch.no_grad()
anton-l's avatar
anton-l committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    def plms_sampling(
        self,
        cond,
        shape,
        x_T=None,
        ddim_use_original_steps=False,
        callback=None,
        timesteps=None,
        quantize_denoised=False,
        mask=None,
        x0=None,
        img_callback=None,
        log_every_t=100,
        temperature=1.0,
        noise_dropout=0.0,
        score_corrector=None,
        corrector_kwargs=None,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
198
199
200
201
        device = self.model.betas.device
        b = shape[0]
        if x_T is None:
            img = torch.randn(shape, device=device)
Patrick von Platen's avatar
Patrick von Platen committed
202
        else:
Patrick von Platen's avatar
Patrick von Platen committed
203
204
205
206
207
208
209
210
            img = x_T

        if timesteps is None:
            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
        elif timesteps is not None and not ddim_use_original_steps:
            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
            timesteps = self.ddim_timesteps[:subset_end]

anton-l's avatar
anton-l committed
211
212
        intermediates = {"x_inter": [img], "pred_x0": [img]}
        time_range = list(reversed(range(0, timesteps))) if ddim_use_original_steps else np.flip(timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
213
214
215
        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
        print(f"Running PLMS Sampling with {total_steps} timesteps")

anton-l's avatar
anton-l committed
216
        iterator = tqdm(time_range, desc="PLMS Sampler", total=total_steps)
Patrick von Platen's avatar
Patrick von Platen committed
217
218
219
220
221
222
223
224
225
226
        old_eps = []

        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full((b,), step, device=device, dtype=torch.long)
            ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)

            if mask is not None:
                assert x0 is not None
                img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
anton-l's avatar
anton-l committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
                img = img_orig * mask + (1.0 - mask) * img

            outs = self.p_sample_plms(
                img,
                cond,
                ts,
                index=index,
                use_original_steps=ddim_use_original_steps,
                quantize_denoised=quantize_denoised,
                temperature=temperature,
                noise_dropout=noise_dropout,
                score_corrector=score_corrector,
                corrector_kwargs=corrector_kwargs,
                unconditional_guidance_scale=unconditional_guidance_scale,
                unconditional_conditioning=unconditional_conditioning,
                old_eps=old_eps,
                t_next=ts_next,
            )
Patrick von Platen's avatar
Patrick von Platen committed
245
246
247
248
            img, pred_x0, e_t = outs
            old_eps.append(e_t)
            if len(old_eps) >= 4:
                old_eps.pop(0)
anton-l's avatar
anton-l committed
249
250
251
252
            if callback:
                callback(i)
            if img_callback:
                img_callback(pred_x0, i)
Patrick von Platen's avatar
Patrick von Platen committed
253
254

            if index % log_every_t == 0 or index == total_steps - 1:
anton-l's avatar
anton-l committed
255
256
                intermediates["x_inter"].append(img)
                intermediates["pred_x0"].append(pred_x0)
Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
260

        return img, intermediates

    @torch.no_grad()
anton-l's avatar
anton-l committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    def p_sample_plms(
        self,
        x,
        c,
        t,
        index,
        repeat_noise=False,
        use_original_steps=False,
        quantize_denoised=False,
        temperature=1.0,
        noise_dropout=0.0,
        score_corrector=None,
        corrector_kwargs=None,
        unconditional_guidance_scale=1.0,
        unconditional_conditioning=None,
        old_eps=None,
        t_next=None,
    ):
Patrick von Platen's avatar
Patrick von Platen committed
279
280
281
        b, *_, device = *x.shape, x.device

        def get_model_output(x, t):
anton-l's avatar
anton-l committed
282
            if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
Patrick von Platen's avatar
Patrick von Platen committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
                e_t = self.model.apply_model(x, t, c)
            else:
                x_in = torch.cat([x] * 2)
                t_in = torch.cat([t] * 2)
                c_in = torch.cat([unconditional_conditioning, c])
                e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
                e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)

            if score_corrector is not None:
                assert self.model.parameterization == "eps"
                e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)

            return e_t

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
anton-l's avatar
anton-l committed
299
300
301
        sqrt_one_minus_alphas = (
            self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
        )
Patrick von Platen's avatar
Patrick von Platen committed
302
303
304
305
306
307
308
        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas

        def get_x_prev_and_pred_x0(e_t, index):
            # select parameters corresponding to the currently considered timestep
            a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
            a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
            sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
anton-l's avatar
anton-l committed
309
            sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device)
Patrick von Platen's avatar
Patrick von Platen committed
310
311
312
313
314
315

            # current prediction for x_0
            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
            if quantize_denoised:
                pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
            # direction pointing to x_t
anton-l's avatar
anton-l committed
316
            dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
Patrick von Platen's avatar
Patrick von Platen committed
317
            noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
anton-l's avatar
anton-l committed
318
            if noise_dropout > 0.0:
Patrick von Platen's avatar
Patrick von Platen committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
                noise = torch.nn.functional.dropout(noise, p=noise_dropout)
            x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
            return x_prev, pred_x0

        e_t = get_model_output(x, t)
        if len(old_eps) == 0:
            # Pseudo Improved Euler (2nd order)
            x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
            e_t_next = get_model_output(x_prev, t_next)
            e_t_prime = (e_t + e_t_next) / 2
        elif len(old_eps) == 1:
            # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
            e_t_prime = (3 * e_t - old_eps[-1]) / 2
        elif len(old_eps) == 2:
            # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
            e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
        elif len(old_eps) >= 3:
            # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
            e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24

        x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)

        return x_prev, pred_x0, e_t