test_pixart.py 15.3 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Sayak Paul's avatar
Sayak Paul committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    PixArtAlphaPipeline,
28
    PixArtTransformer2DModel,
Sayak Paul's avatar
Sayak Paul committed
29
)
Dhruv Nair's avatar
Dhruv Nair committed
30
31
32
33
34
35
36
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    numpy_cosine_similarity_distance,
    require_torch_gpu,
    slow,
    torch_device,
)
Sayak Paul's avatar
Sayak Paul committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np


enable_full_determinism()


class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = PixArtAlphaPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS

    required_optional_params = PipelineTesterMixin.required_optional_params
Aryan's avatar
Aryan committed
53
    test_layerwise_casting = True
Sayak Paul's avatar
Sayak Paul committed
54
55
56

    def get_dummy_components(self):
        torch.manual_seed(0)
57
        transformer = PixArtTransformer2DModel(
Sayak Paul's avatar
Sayak Paul committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
            sample_size=8,
            num_layers=2,
            patch_size=2,
            attention_head_dim=8,
            num_attention_heads=3,
            caption_channels=32,
            in_channels=4,
            cross_attention_dim=24,
            out_channels=8,
            attention_bias=True,
            activation_fn="gelu-approximate",
            num_embeds_ada_norm=1000,
            norm_type="ada_norm_single",
            norm_elementwise_affine=False,
            norm_eps=1e-6,
        )
74
        torch.manual_seed(0)
Sayak Paul's avatar
Sayak Paul committed
75
        vae = AutoencoderKL()
76

Sayak Paul's avatar
Sayak Paul committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        scheduler = DDIMScheduler()
        text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
101
102
            "use_resolution_binning": False,
            "output_type": "np",
Sayak Paul's avatar
Sayak Paul committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        }
        return inputs

    def test_sequential_cpu_offload_forward_pass(self):
        # TODO(PVP, Sayak) need to fix later
        return

    def test_save_load_optional_components(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

123
124
125
126
127
128
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = pipe.encode_prompt(prompt)
Sayak Paul's avatar
Sayak Paul committed
129
130
131
132

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
133
            "prompt_attention_mask": prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
134
135
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
136
            "negative_prompt_attention_mask": negative_prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
137
138
139
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
140
            "use_resolution_binning": False,
Sayak Paul's avatar
Sayak Paul committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
170
            "prompt_attention_mask": prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
171
172
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
173
            "negative_prompt_attention_mask": negative_prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
174
175
176
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
177
            "use_resolution_binning": False,
Sayak Paul's avatar
Sayak Paul committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        }

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (1, 8, 8, 3))
198
        expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852])
Sayak Paul's avatar
Sayak Paul committed
199
200
201
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

202
203
204
205
206
207
208
209
210
211
212
213
    def test_inference_non_square_images(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs, height=32, width=48).images
        image_slice = image[0, -3:, -3:, -1]
        self.assertEqual(image.shape, (1, 32, 48, 3))
214

215
        expected_slice = np.array([0.6493, 0.537, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263])
216
217
218
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

219
220
221
222
223
224
225
226
227
228
229
230
231
    def test_inference_with_embeddings_and_multiple_images(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

232
        prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt)
233
234
235
236

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
237
            "prompt_attention_mask": prompt_attn_mask,
238
239
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
240
            "negative_prompt_attention_mask": neg_prompt_attn_mask,
241
242
243
244
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "num_images_per_prompt": 2,
245
            "use_resolution_binning": False,
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
275
            "prompt_attention_mask": prompt_attn_mask,
276
277
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
278
            "negative_prompt_attention_mask": neg_prompt_attn_mask,
279
280
281
282
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "num_images_per_prompt": 2,
283
            "use_resolution_binning": False,
284
285
286
287
288
289
290
        }

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def test_inference_with_multiple_images_per_prompt(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["num_images_per_prompt"] = 2
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (2, 8, 8, 3))
305
        expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852])
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_raises_warning_for_mask_feature(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs.update({"mask_feature": True})

        with self.assertWarns(FutureWarning) as warning_ctx:
            _ = pipe(**inputs).images

        assert "mask_feature" in str(warning_ctx.warning)

Sayak Paul's avatar
Sayak Paul committed
325
326
327
328
329
330
331
    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)


@slow
@require_torch_gpu
class PixArtAlphaPipelineIntegrationTests(unittest.TestCase):
332
333
334
335
    ckpt_id_1024 = "PixArt-alpha/PixArt-XL-2-1024-MS"
    ckpt_id_512 = "PixArt-alpha/PixArt-XL-2-512x512"
    prompt = "A small cactus with a happy face in the Sahara desert."

336
337
338
339
340
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Sayak Paul's avatar
Sayak Paul committed
341
342
343
344
345
346
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_pixart_1024(self):
Dhruv Nair's avatar
Dhruv Nair committed
347
        generator = torch.Generator("cpu").manual_seed(0)
Sayak Paul's avatar
Sayak Paul committed
348

349
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
Sayak Paul's avatar
Sayak Paul committed
350
        pipe.enable_model_cpu_offload()
351
        prompt = self.prompt
Sayak Paul's avatar
Sayak Paul committed
352

Dhruv Nair's avatar
Dhruv Nair committed
353
        image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images
Sayak Paul's avatar
Sayak Paul committed
354
355

        image_slice = image[0, -3:, -3:, -1]
Dhruv Nair's avatar
Dhruv Nair committed
356
        expected_slice = np.array([0.0742, 0.0835, 0.2114, 0.0295, 0.0784, 0.2361, 0.1738, 0.2251, 0.3589])
Sayak Paul's avatar
Sayak Paul committed
357

Dhruv Nair's avatar
Dhruv Nair committed
358
359
        max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
        self.assertLessEqual(max_diff, 1e-4)
Sayak Paul's avatar
Sayak Paul committed
360
361

    def test_pixart_512(self):
Dhruv Nair's avatar
Dhruv Nair committed
362
        generator = torch.Generator("cpu").manual_seed(0)
Sayak Paul's avatar
Sayak Paul committed
363

364
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
Sayak Paul's avatar
Sayak Paul committed
365
366
        pipe.enable_model_cpu_offload()

367
        prompt = self.prompt
Sayak Paul's avatar
Sayak Paul committed
368

Dhruv Nair's avatar
Dhruv Nair committed
369
        image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images
Sayak Paul's avatar
Sayak Paul committed
370
371

        image_slice = image[0, -3:, -3:, -1]
Dhruv Nair's avatar
Dhruv Nair committed
372
        expected_slice = np.array([0.3477, 0.3882, 0.4541, 0.3413, 0.3821, 0.4463, 0.4001, 0.4409, 0.4958])
Sayak Paul's avatar
Sayak Paul committed
373

Dhruv Nair's avatar
Dhruv Nair committed
374
375
        max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
        self.assertLessEqual(max_diff, 1e-4)
376
377
378
379

    def test_pixart_1024_without_resolution_binning(self):
        generator = torch.manual_seed(0)

380
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
381
382
        pipe.enable_model_cpu_offload()

383
384
        prompt = self.prompt
        height, width = 1024, 768
Dhruv Nair's avatar
Dhruv Nair committed
385
        num_inference_steps = 2
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

        image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
        ).images
        image_slice = image[0, -3:, -3:, -1]

        generator = torch.manual_seed(0)
        no_res_bin_image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
            use_resolution_binning=False,
        ).images
        no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]
408

409
410
411
412
413
414
415
416
417
418
        assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)

    def test_pixart_512_without_resolution_binning(self):
        generator = torch.manual_seed(0)

        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
        pipe.enable_model_cpu_offload()

        prompt = self.prompt
        height, width = 512, 768
Dhruv Nair's avatar
Dhruv Nair committed
419
        num_inference_steps = 2
420
421
422
423
424
425
426
427
428

        image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
        ).images
429
430
431
432
        image_slice = image[0, -3:, -3:, -1]

        generator = torch.manual_seed(0)
        no_res_bin_image = pipe(
433
434
435
436
437
438
439
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
            use_resolution_binning=False,
440
441
442
443
        ).images
        no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]

        assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)