test_controlnet_sdxl.py 41 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
17
import gc
18
19
import unittest

20
import numpy as np
21
22
23
24
25
26
27
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    EulerDiscreteScheduler,
28
    HeunDiscreteScheduler,
29
    LCMScheduler,
30
    StableDiffusionXLControlNetPipeline,
31
    StableDiffusionXLImg2ImgPipeline,
32
33
    UNet2DConditionModel,
)
34
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D
35
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
36
from diffusers.utils.import_utils import is_xformers_available
37
from diffusers.utils.testing_utils import (
38
    backend_empty_cache,
39
40
    enable_full_determinism,
    load_image,
41
    require_torch_accelerator,
42
43
44
    slow,
    torch_device,
)
Dhruv Nair's avatar
Dhruv Nair committed
45
from diffusers.utils.torch_utils import randn_tensor
46
47
48
49
50
51
52
53

from ..pipeline_params import (
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
54
    IPAdapterTesterMixin,
55
56
57
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
58
    SDXLOptionalComponentsTesterMixin,
59
60
61
62
63
64
)


enable_full_determinism()


65
class StableDiffusionXLControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
66
    IPAdapterTesterMixin,
67
68
69
70
71
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    SDXLOptionalComponentsTesterMixin,
    unittest.TestCase,
72
73
74
75
76
77
):
    pipeline_class = StableDiffusionXLControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
Aryan's avatar
Aryan committed
78
    test_layerwise_casting = True
79

80
    def get_dummy_components(self, time_cond_proj_dim=None):
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
98
            time_cond_proj_dim=time_cond_proj_dim,
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            conditioning_embedding_out_channels=(16, 32),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
        )
        torch.manual_seed(0)
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
149
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
150
151

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
152
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
153
154
155
156
157
158
159
160
161
162

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
163
164
            "feature_extractor": None,
            "image_encoder": None,
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
186
            "output_type": "np",
187
188
189
190
191
192
193
194
            "image": image,
        }

        return inputs

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

195
    def test_ip_adapter(self, from_ssd1b=False, expected_pipe_slice=None):
196
197
198
199
        if not from_ssd1b:
            expected_pipe_slice = None
            if torch_device == "cpu":
                expected_pipe_slice = np.array(
200
                    [0.7335, 0.5866, 0.5623, 0.6242, 0.5751, 0.5999, 0.4091, 0.4590, 0.5054]
201
                )
202
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
203

204
205
206
207
208
209
210
211
212
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)
213

214
215
216
    def test_save_load_optional_components(self):
        self._test_save_load_optional_components()

217
    @require_torch_accelerator
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def test_stable_diffusion_xl_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            pipe.unet.set_default_attn_processor()

            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    def test_stable_diffusion_xl_multi_prompts(self):
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)

        # forward with single prompt
        inputs = self.get_dummy_inputs(torch_device)
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        # forward with same prompt duplicated
        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt_2"] = inputs["prompt"]
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        # ensure the results are equal
        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

        # forward with different prompt
        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt_2"] = "different prompt"
        output = sd_pipe(**inputs)
        image_slice_3 = output.images[0, -3:, -3:, -1]

        # ensure the results are not equal
        assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4

        # manually set a negative_prompt
        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = "negative prompt"
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        # forward with same negative_prompt duplicated
        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = "negative prompt"
        inputs["negative_prompt_2"] = inputs["negative_prompt"]
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        # ensure the results are equal
        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

        # forward with different negative_prompt
        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = "negative prompt"
        inputs["negative_prompt_2"] = "different negative prompt"
        output = sd_pipe(**inputs)
        image_slice_3 = output.images[0, -3:, -3:, -1]

        # ensure the results are not equal
        assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
298

299
    # Copied from test_stable_diffusion_xl.py
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def test_stable_diffusion_xl_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        # forward without prompt embeds
        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 2 * [inputs["prompt"]]
        inputs["num_images_per_prompt"] = 2

        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        # forward with prompt embeds
        inputs = self.get_dummy_inputs(torch_device)
        prompt = 2 * [inputs.pop("prompt")]

        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = sd_pipe.encode_prompt(prompt)

        output = sd_pipe(
            **inputs,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        )
        image_slice_2 = output.images[0, -3:, -3:, -1]

        # make sure that it's equal
        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    def test_controlnet_sdxl_guess(self):
        device = "cpu"

        components = self.get_dummy_components()

        sd_pipe = self.pipeline_class(**components)
        sd_pipe = sd_pipe.to(device)

        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["guess_mode"] = True

        output = sd_pipe(**inputs)
        image_slice = output.images[0, -3:, -3:, -1]
353
354

        expected_slice = np.array([0.7335, 0.5866, 0.5623, 0.6242, 0.5751, 0.5999, 0.4091, 0.4590, 0.5054])
355
356
357
358

        # make sure that it's equal
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    def test_controlnet_sdxl_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionXLControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
375
        expected_slice = np.array([0.7820, 0.6195, 0.6193, 0.7045, 0.6706, 0.5837, 0.4147, 0.5232, 0.4868])
376
377
378

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

379
    # Copied from test_stable_diffusion_xl.py:test_stable_diffusion_two_xl_mixture_of_denoiser_fast
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    # with `StableDiffusionXLControlNetPipeline` instead of `StableDiffusionXLPipeline`
    def test_controlnet_sdxl_two_mixture_of_denoiser_fast(self):
        components = self.get_dummy_components()
        pipe_1 = StableDiffusionXLControlNetPipeline(**components).to(torch_device)
        pipe_1.unet.set_default_attn_processor()

        components_without_controlnet = {k: v for k, v in components.items() if k != "controlnet"}
        pipe_2 = StableDiffusionXLImg2ImgPipeline(**components_without_controlnet).to(torch_device)
        pipe_2.unet.set_default_attn_processor()

        def assert_run_mixture(
            num_steps,
            split,
            scheduler_cls_orig,
            expected_tss,
            num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps,
        ):
            inputs = self.get_dummy_inputs(torch_device)
            inputs["num_inference_steps"] = num_steps

            class scheduler_cls(scheduler_cls_orig):
                pass

            pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
            pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)

            # Let's retrieve the number of timesteps we want to use
            pipe_1.scheduler.set_timesteps(num_steps)
            expected_steps = pipe_1.scheduler.timesteps.tolist()

            if pipe_1.scheduler.order == 2:
                expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss))
                expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split, expected_tss))
                expected_steps = expected_steps_1 + expected_steps_2
            else:
                expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss))
                expected_steps_2 = list(filter(lambda ts: ts < split, expected_tss))

            # now we monkey patch step `done_steps`
            # list into the step function for testing
            done_steps = []
            old_step = copy.copy(scheduler_cls.step)

            def new_step(self, *args, **kwargs):
                done_steps.append(args[1].cpu().item())  # args[1] is always the passed `t`
                return old_step(self, *args, **kwargs)

            scheduler_cls.step = new_step

            inputs_1 = {
                **inputs,
                **{
                    "denoising_end": 1.0 - (split / num_train_timesteps),
                    "output_type": "latent",
                },
            }
            latents = pipe_1(**inputs_1).images[0]

            assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"

            inputs_2 = {
                **inputs,
                **{
                    "denoising_start": 1.0 - (split / num_train_timesteps),
                    "image": latents,
                },
            }
            pipe_2(**inputs_2).images[0]

            assert expected_steps_2 == done_steps[len(expected_steps_1) :]
            assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"

        steps = 10
        for split in [300, 700]:
            for scheduler_cls_timesteps in [
                (EulerDiscreteScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]),
                (
                    HeunDiscreteScheduler,
                    [
                        901.0,
                        801.0,
                        801.0,
                        701.0,
                        701.0,
                        601.0,
                        601.0,
                        501.0,
                        501.0,
                        401.0,
                        401.0,
                        301.0,
                        301.0,
                        201.0,
                        201.0,
                        101.0,
                        101.0,
                        1.0,
                        1.0,
                    ],
                ),
            ]:
                assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1])

483
484

class StableDiffusionXLMultiControlNetPipelineFastTests(
485
    PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase
486
487
488
489
490
491
):
    pipeline_class = StableDiffusionXLControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess

Marc Sun's avatar
Marc Sun committed
492
493
    supports_dduf = False

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
        )
        torch.manual_seed(0)

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
517
                torch.nn.init.normal_(m.weight)
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
                m.bias.data.fill_(1.0)

        controlnet1 = ControlNetModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            conditioning_embedding_out_channels=(16, 32),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
        )
        controlnet1.controlnet_down_blocks.apply(init_weights)

        torch.manual_seed(0)
        controlnet2 = ControlNetModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            conditioning_embedding_out_channels=(16, 32),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
        )
        controlnet2.controlnet_down_blocks.apply(init_weights)

        torch.manual_seed(0)
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet1, controlnet2])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
604
605
            "feature_extractor": None,
            "image_encoder": None,
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
635
            "output_type": "np",
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
            "image": images,
        }

        return inputs

    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

687
688
689
    def test_save_load_optional_components(self):
        return self._test_save_load_optional_components()

690
691

class StableDiffusionXLMultiControlNetOneModelPipelineFastTests(
692
    PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase
693
694
695
696
697
698
):
    pipeline_class = StableDiffusionXLControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess

Marc Sun's avatar
Marc Sun committed
699
700
    supports_dduf = False

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
        )
        torch.manual_seed(0)

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
724
                torch.nn.init.normal_(m.weight)
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
                m.bias.data.fill_(1.0)

        controlnet = ControlNetModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            conditioning_embedding_out_channels=(16, 32),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
        )
        controlnet.controlnet_down_blocks.apply(init_weights)

        torch.manual_seed(0)
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
793
794
            "feature_extractor": None,
            "image_encoder": None,
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
818
            "output_type": "np",
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
            "image": images,
        }

        return inputs

    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(
            **inputs,
            control_guidance_start=[0.1],
            control_guidance_end=[0.2],
        )[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)
873

874
875
876
    def test_save_load_optional_components(self):
        self._test_save_load_optional_components()

877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
    def test_negative_conditions(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice_without_neg_cond = image[0, -3:, -3:, -1]

        image = pipe(
            **inputs,
            negative_original_size=(512, 512),
            negative_crops_coords_top_left=(0, 0),
            negative_target_size=(1024, 1024),
        ).images
        image_slice_with_neg_cond = image[0, -3:, -3:, -1]

        self.assertTrue(np.abs(image_slice_without_neg_cond - image_slice_with_neg_cond).max() > 1e-2)

896
897

@slow
898
@require_torch_accelerator
899
class ControlNetSDXLPipelineSlowTests(unittest.TestCase):
900
901
902
    def setUp(self):
        super().setUp()
        gc.collect()
903
        backend_empty_cache(torch_device)
904

905
906
907
    def tearDown(self):
        super().tearDown()
        gc.collect()
908
        backend_empty_cache(torch_device)
909
910
911
912
913
914
915

    def test_canny(self):
        controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")

        pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
        )
916
        pipe.enable_sequential_cpu_offload(device=torch_device)
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images

        assert images[0].shape == (768, 512, 3)

        original_image = images[0, -3:, -3:, -1].flatten()
        expected_image = np.array([0.4185, 0.4127, 0.4089, 0.4046, 0.4115, 0.4096, 0.4081, 0.4112, 0.3913])
        assert np.allclose(original_image, expected_image, atol=1e-04)

    def test_depth(self):
        controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0")

        pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
        )
939
        pipe.enable_sequential_cpu_offload(device=torch_device)
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Stormtrooper's lecture"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
        )

        images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images

        assert images[0].shape == (512, 512, 3)

        original_image = images[0, -3:, -3:, -1].flatten()
        expected_image = np.array([0.4399, 0.5112, 0.5478, 0.4314, 0.472, 0.4823, 0.4647, 0.4957, 0.4853])
        assert np.allclose(original_image, expected_image, atol=1e-04)
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972


class StableDiffusionSSD1BControlNetPipelineFastTests(StableDiffusionXLControlNetPipelineFastTests):
    def test_controlnet_sdxl_guess(self):
        device = "cpu"

        components = self.get_dummy_components()

        sd_pipe = self.pipeline_class(**components)
        sd_pipe = sd_pipe.to(device)

        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["guess_mode"] = True

        output = sd_pipe(**inputs)
        image_slice = output.images[0, -3:, -3:, -1]
973
974

        expected_slice = np.array([0.7212, 0.5890, 0.5491, 0.6425, 0.5970, 0.6091, 0.4418, 0.4556, 0.5032])
975
976
977
978

        # make sure that it's equal
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4

979
    def test_ip_adapter(self):
980
981
        expected_pipe_slice = None
        if torch_device == "cpu":
982
983
            expected_pipe_slice = np.array([0.7212, 0.5890, 0.5491, 0.6425, 0.5970, 0.6091, 0.4418, 0.4556, 0.5032])

984
        return super().test_ip_adapter(from_ssd1b=True, expected_pipe_slice=expected_pipe_slice)
985

986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
    def test_controlnet_sdxl_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionXLControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
1002
        expected_slice = np.array([0.6787, 0.5117, 0.5558, 0.6963, 0.6571, 0.5928, 0.4121, 0.5468, 0.5057])
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_conditioning_channels(self):
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            mid_block_type="UNetMidBlock2D",
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
            time_cond_proj_dim=None,
        )

        controlnet = ControlNetModel.from_unet(unet, conditioning_channels=4)
1028
        assert type(controlnet.mid_block) is UNetMidBlock2D
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        assert controlnet.conditioning_channels == 4

    def get_dummy_components(self, time_cond_proj_dim=None):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            mid_block_type="UNetMidBlock2D",
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
            time_cond_proj_dim=time_cond_proj_dim,
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            conditioning_embedding_out_channels=(16, 32),
            mid_block_type="UNetMidBlock2D",
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64,
        )
        torch.manual_seed(0)
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
            "feature_extractor": None,
            "image_encoder": None,
        }
        return components