pipeline_audioldm.py 25.4 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
import torch.nn.functional as F
from transformers import ClapTextModelWithProjection, RobertaTokenizer, RobertaTokenizerFast, SpeechT5HifiGan

from ...models import AutoencoderKL, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers
Dhruv Nair's avatar
Dhruv Nair committed
25
26
from ...utils import logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
27
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline, StableDiffusionMixin
Sanchit Gandhi's avatar
Sanchit Gandhi committed
28
29
30
31
32
33
34
35


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> from diffusers import AudioLDMPipeline
36
37
        >>> import torch
        >>> import scipy
Sanchit Gandhi's avatar
Sanchit Gandhi committed
38

39
40
        >>> repo_id = "cvssp/audioldm-s-full-v2"
        >>> pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
41
42
        >>> pipe = pipe.to("cuda")

43
44
45
46
47
        >>> prompt = "Techno music with a strong, upbeat tempo and high melodic riffs"
        >>> audio = pipe(prompt, num_inference_steps=10, audio_length_in_s=5.0).audios[0]

        >>> # save the audio sample as a .wav file
        >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
48
49
50
51
        ```
"""


52
class AudioLDMPipeline(DiffusionPipeline, StableDiffusionMixin):
Sanchit Gandhi's avatar
Sanchit Gandhi committed
53
54
55
    r"""
    Pipeline for text-to-audio generation using AudioLDM.

56
57
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Sanchit Gandhi's avatar
Sanchit Gandhi committed
58
59
60

    Args:
        vae ([`AutoencoderKL`]):
61
62
63
64
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.ClapTextModelWithProjection`]):
            Frozen text-encoder (`ClapTextModelWithProjection`, specifically the
            [laion/clap-htsat-unfused](https://huggingface.co/laion/clap-htsat-unfused) variant.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
65
        tokenizer ([`PreTrainedTokenizer`]):
66
67
68
            A [`~transformers.RobertaTokenizer`] to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded audio latents.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
69
70
71
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
72
73
        vocoder ([`~transformers.SpeechT5HifiGan`]):
            Vocoder of class `SpeechT5HifiGan`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
74
    """
75

76
    model_cpu_offload_seq = "text_encoder->unet->vae"
Sanchit Gandhi's avatar
Sanchit Gandhi committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: ClapTextModelWithProjection,
        tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        vocoder: SpeechT5HifiGan,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            vocoder=vocoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)

    def _encode_prompt(
        self,
        prompt,
        device,
        num_waveforms_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
106
107
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device (`torch.device`):
                torch device
            num_waveforms_per_prompt (`int`):
                number of waveforms that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the audio generation. If not defined, one has to pass
123
124
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
125
            prompt_embeds (`torch.Tensor`, *optional*):
Sanchit Gandhi's avatar
Sanchit Gandhi committed
126
127
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
128
            negative_prompt_embeds (`torch.Tensor`, *optional*):
Sanchit Gandhi's avatar
Sanchit Gandhi committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
        """
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            attention_mask = text_inputs.attention_mask
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLAP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            prompt_embeds = self.text_encoder(
                text_input_ids.to(device),
                attention_mask=attention_mask.to(device),
            )
            prompt_embeds = prompt_embeds.text_embeds
            # additional L_2 normalization over each hidden-state
            prompt_embeds = F.normalize(prompt_embeds, dim=-1)

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        (
            bs_embed,
            seq_len,
        ) = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt)
        prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            uncond_input_ids = uncond_input.input_ids.to(device)
            attention_mask = uncond_input.attention_mask.to(device)

            negative_prompt_embeds = self.text_encoder(
                uncond_input_ids,
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds.text_embeds
            # additional L_2 normalization over each hidden-state
            negative_prompt_embeds = F.normalize(negative_prompt_embeds, dim=-1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents
        mel_spectrogram = self.vae.decode(latents).sample
        return mel_spectrogram

    def mel_spectrogram_to_waveform(self, mel_spectrogram):
        if mel_spectrogram.dim() == 4:
            mel_spectrogram = mel_spectrogram.squeeze(1)

        waveform = self.vocoder(mel_spectrogram)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
249
        waveform = waveform.cpu().float()
Sanchit Gandhi's avatar
Sanchit Gandhi committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        return waveform

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        audio_length_in_s,
        vocoder_upsample_factor,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
        min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
        if audio_length_in_s < min_audio_length_in_s:
            raise ValueError(
                f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
                f"is {audio_length_in_s}."
            )

        if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
            raise ValueError(
                f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
                f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
                f"{self.vae_scale_factor}."
            )

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents with width->self.vocoder.config.model_in_dim
    def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
333
334
            int(height) // self.vae_scale_factor,
            int(self.vocoder.config.model_in_dim) // self.vae_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        audio_length_in_s: Optional[float] = None,
        num_inference_steps: int = 10,
        guidance_scale: float = 2.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_waveforms_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
363
364
365
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
366
        return_dict: bool = True,
367
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
368
369
370
371
372
        callback_steps: Optional[int] = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        output_type: Optional[str] = "np",
    ):
        r"""
373
        The call function to the pipeline for generation.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
374
375
376

        Args:
            prompt (`str` or `List[str]`, *optional*):
377
                The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
378
379
380
381
382
383
            audio_length_in_s (`int`, *optional*, defaults to 5.12):
                The length of the generated audio sample in seconds.
            num_inference_steps (`int`, *optional*, defaults to 10):
                The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 2.5):
384
385
                A higher guidance scale value encourages the model to generate audio that is closely linked to the text
                `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
386
            negative_prompt (`str` or `List[str]`, *optional*):
387
388
                The prompt or prompts to guide what to not include in audio generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
Sanchit Gandhi's avatar
Sanchit Gandhi committed
389
390
391
            num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
                The number of waveforms to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
392
393
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
394
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
395
396
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
397
            latents (`torch.Tensor`, *optional*):
398
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
Sanchit Gandhi's avatar
Sanchit Gandhi committed
399
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
400
                tensor is generated by sampling using the supplied random `generator`.
401
            prompt_embeds (`torch.Tensor`, *optional*):
402
403
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
404
            negative_prompt_embeds (`torch.Tensor`, *optional*):
405
406
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
407
            return_dict (`bool`, *optional*, defaults to `True`):
408
                Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
409
            callback (`Callable`, *optional*):
410
                A function that calls every `callback_steps` steps during inference. The function is called with the
411
                following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
412
            callback_steps (`int`, *optional*, defaults to 1):
413
414
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
415
            cross_attention_kwargs (`dict`, *optional*):
416
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
Patrick von Platen's avatar
Patrick von Platen committed
417
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
Sanchit Gandhi's avatar
Sanchit Gandhi committed
418
            output_type (`str`, *optional*, defaults to `"np"`):
419
420
                The output format of the generated image. Choose between `"np"` to return a NumPy `np.ndarray` or
                `"pt"` to return a PyTorch `torch.Tensor` object.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
421
422
423
424

        Examples:

        Returns:
425
426
427
            [`~pipelines.AudioPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated audio.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        """
        # 0. Convert audio input length from seconds to spectrogram height
        vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate

        if audio_length_in_s is None:
            audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor

        height = int(audio_length_in_s / vocoder_upsample_factor)

        original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
        if height % self.vae_scale_factor != 0:
            height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
            logger.info(
                f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
                f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
                f"denoising process."
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            audio_length_in_s,
            vocoder_upsample_factor,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_waveforms_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
487
        num_channels_latents = self.unet.config.in_channels
Sanchit Gandhi's avatar
Sanchit Gandhi committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
        latents = self.prepare_latents(
            batch_size * num_waveforms_per_prompt,
            num_channels_latents,
            height,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=None,
                    class_labels=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
530
531
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

        # 8. Post-processing
        mel_spectrogram = self.decode_latents(latents)

        audio = self.mel_spectrogram_to_waveform(mel_spectrogram)

        audio = audio[:, :original_waveform_length]

        if output_type == "np":
            audio = audio.numpy()

        if not return_dict:
            return (audio,)

        return AudioPipelineOutput(audios=audio)