vae.py 35.6 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Optional, Tuple
Partho's avatar
Partho committed
16

patil-suraj's avatar
patil-suraj committed
17
18
19
20
import numpy as np
import torch
import torch.nn as nn

21
22
23
24
from ...utils import BaseOutput, is_torch_version
from ...utils.torch_utils import randn_tensor
from ..activations import get_activation
from ..attention_processor import SpatialNorm
25
from ..unets.unet_2d_blocks import (
Suraj Patil's avatar
Suraj Patil committed
26
27
28
29
30
    AutoencoderTinyBlock,
    UNetMidBlock2D,
    get_down_block,
    get_up_block,
)
patil-suraj's avatar
patil-suraj committed
31
32


33
34
@dataclass
class DecoderOutput(BaseOutput):
35
    r"""
36
37
38
    Output of decoding method.

    Args:
39
        sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
40
            The decoded output sample from the last layer of the model.
41
42
    """

43
    sample: torch.Tensor
44
45


patil-suraj's avatar
patil-suraj committed
46
class Encoder(nn.Module):
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    r"""
    The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
            options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        double_z (`bool`, *optional*, defaults to `True`):
            Whether to double the number of output channels for the last block.
    """

patil-suraj's avatar
patil-suraj committed
70
71
    def __init__(
        self,
72
73
74
75
76
77
78
79
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        double_z: bool = True,
Will Berman's avatar
Will Berman committed
80
        mid_block_add_attention=True,
patil-suraj's avatar
patil-suraj committed
81
82
    ):
        super().__init__()
83
84
        self.layers_per_block = layers_per_block

Kashif Rasul's avatar
Kashif Rasul committed
85
        self.conv_in = nn.Conv2d(
86
87
88
89
90
91
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
        )
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
109
                downsample_padding=0,
110
                resnet_act_fn=act_fn,
111
                resnet_groups=norm_num_groups,
112
                attention_head_dim=output_channel,
113
114
115
116
117
118
119
120
121
122
123
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
124
            attention_head_dim=block_out_channels[-1],
125
            resnet_groups=norm_num_groups,
126
            temb_channels=None,
Will Berman's avatar
Will Berman committed
127
            add_attention=mid_block_add_attention,
patil-suraj's avatar
patil-suraj committed
128
129
        )

130
        # out
131
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
132
133
134
135
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
136

137
138
        self.gradient_checkpointing = False

139
    def forward(self, sample: torch.Tensor) -> torch.Tensor:
140
        r"""The forward method of the `Encoder` class."""
141

142
143
        sample = self.conv_in(sample)

144
145
146
147
148
149
150
151
152
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # down
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            if is_torch_version(">=", "1.11.0"):
                for down_block in self.down_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(down_block), sample, use_reentrant=False
                    )
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, use_reentrant=False
                )
            else:
                for down_block in self.down_blocks:
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
                # middle
                sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
167
168
169
170
171

        else:
            # down
            for down_block in self.down_blocks:
                sample = down_block(sample)
patil-suraj's avatar
patil-suraj committed
172

173
174
            # middle
            sample = self.mid_block(sample)
175
176
177
178
179
180
181

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
182
183
184


class Decoder(nn.Module):
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    r"""
    The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """

patil-suraj's avatar
patil-suraj committed
207
208
    def __init__(
        self,
209
210
211
212
213
214
215
216
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
Will Berman's avatar
Will Berman committed
217
        mid_block_add_attention=True,
patil-suraj's avatar
patil-suraj committed
218
219
    ):
        super().__init__()
220
221
        self.layers_per_block = layers_per_block

222
223
224
225
226
227
228
        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )
229
230
231

        self.up_blocks = nn.ModuleList([])

YiYi Xu's avatar
YiYi Xu committed
232
233
        temb_channels = in_channels if norm_type == "spatial" else None

234
235
236
237
238
239
        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
YiYi Xu's avatar
YiYi Xu committed
240
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
241
            attention_head_dim=block_out_channels[-1],
242
            resnet_groups=norm_num_groups,
YiYi Xu's avatar
YiYi Xu committed
243
            temb_channels=temb_channels,
Will Berman's avatar
Will Berman committed
244
            add_attention=mid_block_add_attention,
patil-suraj's avatar
patil-suraj committed
245
246
        )

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
265
                resnet_groups=norm_num_groups,
266
                attention_head_dim=output_channel,
YiYi Xu's avatar
YiYi Xu committed
267
268
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
269
270
271
272
273
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
YiYi Xu's avatar
YiYi Xu committed
274
275
276
277
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
278
279
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
280

281
282
        self.gradient_checkpointing = False

283
    def forward(
Suraj Patil's avatar
Suraj Patil committed
284
        self,
285
286
287
        sample: torch.Tensor,
        latent_embeds: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
288
        r"""The forward method of the `Decoder` class."""
289

290
        sample = self.conv_in(sample)
patil-suraj's avatar
patil-suraj committed
291

292
        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
293
        if self.training and self.gradient_checkpointing:
patil-suraj's avatar
patil-suraj committed
294

295
296
297
298
299
300
            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

301
302
303
            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
304
305
306
307
                    create_custom_forward(self.mid_block),
                    sample,
                    latent_embeds,
                    use_reentrant=False,
308
309
310
311
312
313
                )
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
314
315
316
317
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        use_reentrant=False,
318
319
320
                    )
            else:
                # middle
YiYi Xu's avatar
YiYi Xu committed
321
322
323
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
324
325
326
327
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
328
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
329
330
        else:
            # middle
YiYi Xu's avatar
YiYi Xu committed
331
            sample = self.mid_block(sample, latent_embeds)
332
            sample = sample.to(upscale_dtype)
333
334
335

            # up
            for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
336
                sample = up_block(sample, latent_embeds)
patil-suraj's avatar
patil-suraj committed
337

338
        # post-process
YiYi Xu's avatar
YiYi Xu committed
339
340
341
342
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
343
344
345
346
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
347
348


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
349
class UpSample(nn.Module):
350
351
352
353
354
355
356
357
358
359
    r"""
    The `UpSample` layer of a variational autoencoder that upsamples its input.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
    """

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
360
361
362
363
364
365
366
367
368
369
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
    ) -> None:
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)

370
    def forward(self, x: torch.Tensor) -> torch.Tensor:
371
        r"""The forward method of the `UpSample` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        x = torch.relu(x)
        x = self.deconv(x)
        return x


class MaskConditionEncoder(nn.Module):
    """
    used in AsymmetricAutoencoderKL
    """

    def __init__(
        self,
        in_ch: int,
        out_ch: int = 192,
        res_ch: int = 768,
        stride: int = 16,
    ) -> None:
        super().__init__()

        channels = []
        while stride > 1:
            stride = stride // 2
            in_ch_ = out_ch * 2
            if out_ch > res_ch:
                out_ch = res_ch
            if stride == 1:
                in_ch_ = res_ch
            channels.append((in_ch_, out_ch))
            out_ch *= 2

        out_channels = []
        for _in_ch, _out_ch in channels:
            out_channels.append(_out_ch)
        out_channels.append(channels[-1][0])

        layers = []
        in_ch_ = in_ch
        for l in range(len(out_channels)):
            out_ch_ = out_channels[l]
            if l == 0 or l == 1:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
            else:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
            in_ch_ = out_ch_

        self.layers = nn.Sequential(*layers)

419
    def forward(self, x: torch.Tensor, mask=None) -> torch.Tensor:
420
        r"""The forward method of the `MaskConditionEncoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
421
422
423
424
425
426
427
428
429
430
        out = {}
        for l in range(len(self.layers)):
            layer = self.layers[l]
            x = layer(x)
            out[str(tuple(x.shape))] = x
            x = torch.relu(x)
        return out


class MaskConditionDecoder(nn.Module):
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
    decoder with a conditioner on the mask and masked image.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
452
453
454

    def __init__(
        self,
455
456
457
458
459
460
461
462
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # condition encoder
        self.condition_encoder = MaskConditionEncoder(
            in_ch=out_channels,
            out_ch=block_out_channels[0],
            res_ch=block_out_channels[-1],
        )

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

        self.gradient_checkpointing = False

534
535
    def forward(
        self,
536
537
538
539
540
        z: torch.Tensor,
        image: Optional[torch.Tensor] = None,
        mask: Optional[torch.Tensor] = None,
        latent_embeds: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
541
        r"""The forward method of the `MaskConditionDecoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
        sample = z
        sample = self.conv_in(sample)

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
557
558
559
560
                    create_custom_forward(self.mid_block),
                    sample,
                    latent_embeds,
                    use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
561
562
563
564
565
566
567
                )
                sample = sample.to(upscale_dtype)

                # condition encoder
                if image is not None and mask is not None:
                    masked_image = (1 - mask) * image
                    im_x = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
568
569
570
571
                        create_custom_forward(self.condition_encoder),
                        masked_image,
                        mask,
                        use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
572
573
574
575
576
577
578
579
580
                    )

                # up
                for up_block in self.up_blocks:
                    if image is not None and mask is not None:
                        sample_ = im_x[str(tuple(sample.shape))]
                        mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                        sample = sample * mask_ + sample_ * (1 - mask_)
                    sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
581
582
583
584
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
                    )
                if image is not None and mask is not None:
                    sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
            else:
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
                sample = sample.to(upscale_dtype)

                # condition encoder
                if image is not None and mask is not None:
                    masked_image = (1 - mask) * image
                    im_x = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
599
600
601
                        create_custom_forward(self.condition_encoder),
                        masked_image,
                        mask,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
                    )

                # up
                for up_block in self.up_blocks:
                    if image is not None and mask is not None:
                        sample_ = im_x[str(tuple(sample.shape))]
                        mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                        sample = sample * mask_ + sample_ * (1 - mask_)
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
                if image is not None and mask is not None:
                    sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
        else:
            # middle
            sample = self.mid_block(sample, latent_embeds)
            sample = sample.to(upscale_dtype)

            # condition encoder
            if image is not None and mask is not None:
                masked_image = (1 - mask) * image
                im_x = self.condition_encoder(masked_image, mask)

            # up
            for up_block in self.up_blocks:
                if image is not None and mask is not None:
                    sample_ = im_x[str(tuple(sample.shape))]
                    mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                    sample = sample * mask_ + sample_ * (1 - mask_)
                sample = up_block(sample, latent_embeds)
            if image is not None and mask is not None:
                sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)

        # post-process
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


patil-suraj's avatar
patil-suraj committed
644
645
646
647
648
649
650
651
652
class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
Will Berman's avatar
Will Berman committed
653
    def __init__(
654
655
656
657
658
659
660
661
        self,
        n_e: int,
        vq_embed_dim: int,
        beta: float,
        remap=None,
        unknown_index: str = "random",
        sane_index_shape: bool = False,
        legacy: bool = True,
Will Berman's avatar
Will Berman committed
662
    ):
patil-suraj's avatar
patil-suraj committed
663
664
        super().__init__()
        self.n_e = n_e
Will Berman's avatar
Will Berman committed
665
        self.vq_embed_dim = vq_embed_dim
patil-suraj's avatar
patil-suraj committed
666
667
668
        self.beta = beta
        self.legacy = legacy

Will Berman's avatar
Will Berman committed
669
        self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
670
671
672
673
674
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
675
            self.used: torch.Tensor
patil-suraj's avatar
patil-suraj committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

690
    def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
691
692
693
694
695
696
697
698
699
700
701
702
703
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

704
    def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
705
706
707
708
709
710
711
712
713
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

714
    def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Tuple]:
patil-suraj's avatar
patil-suraj committed
715
716
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
Will Berman's avatar
Will Berman committed
717
        z_flattened = z.view(-1, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
718

719
720
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
        min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
patil-suraj's avatar
patil-suraj committed
721
722
723
724
725
726
727
728
729
730
731
732

        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
733
        z_q: torch.Tensor = z + (z_q - z).detach()
patil-suraj's avatar
patil-suraj committed
734
735
736
737
738
739
740
741
742
743
744
745
746
747

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

748
    def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
749
750
751
752
753
754
755
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
756
        z_q: torch.Tensor = self.embedding(indices)
patil-suraj's avatar
patil-suraj committed
757
758
759
760
761
762
763
764
765
766

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
767
    def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
patil-suraj's avatar
patil-suraj committed
768
769
770
771
772
773
774
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
775
776
777
            self.var = self.std = torch.zeros_like(
                self.mean, device=self.parameters.device, dtype=self.parameters.dtype
            )
patil-suraj's avatar
patil-suraj committed
778

779
    def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
780
        # make sure sample is on the same device as the parameters and has same dtype
781
        sample = randn_tensor(
Suraj Patil's avatar
Suraj Patil committed
782
783
784
785
            self.mean.shape,
            generator=generator,
            device=self.parameters.device,
            dtype=self.parameters.dtype,
786
        )
787
        x = self.mean + self.std * sample
patil-suraj's avatar
patil-suraj committed
788
789
        return x

790
    def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
791
792
793
794
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
Suraj Patil's avatar
Suraj Patil committed
795
796
797
798
                return 0.5 * torch.sum(
                    torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
                    dim=[1, 2, 3],
                )
patil-suraj's avatar
patil-suraj committed
799
800
801
802
803
804
805
806
807
808
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=[1, 2, 3],
                )

809
    def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
810
811
812
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
Suraj Patil's avatar
Suraj Patil committed
813
814
815
816
        return 0.5 * torch.sum(
            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
            dim=dims,
        )
patil-suraj's avatar
patil-suraj committed
817

818
    def mode(self) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
819
        return self.mean
820
821
822


class EncoderTiny(nn.Module):
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
    r"""
    The `EncoderTiny` layer is a simpler version of the `Encoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

840
841
842
843
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
844
845
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
846
847
848
849
850
851
852
853
854
855
856
        act_fn: str,
    ):
        super().__init__()

        layers = []
        for i, num_block in enumerate(num_blocks):
            num_channels = block_out_channels[i]

            if i == 0:
                layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
            else:
Suraj Patil's avatar
Suraj Patil committed
857
858
859
860
861
862
863
864
865
866
                layers.append(
                    nn.Conv2d(
                        num_channels,
                        num_channels,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        bias=False,
                    )
                )
867
868
869
870
871
872
873
874
875

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

        layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

876
    def forward(self, x: torch.Tensor) -> torch.Tensor:
877
        r"""The forward method of the `EncoderTiny` class."""
878
879
880
881
882
883
884
885
886
887
888
889
890
891
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
            else:
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)

        else:
892
893
            # scale image from [-1, 1] to [0, 1] to match TAESD convention
            x = self.layers(x.add(1).div(2))
894
895
896
897
898

        return x


class DecoderTiny(nn.Module):
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
    r"""
    The `DecoderTiny` layer is a simpler version of the `Decoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        upsampling_scaling_factor (`int`):
            The scaling factor to use for upsampling.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

918
919
920
921
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
922
923
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
924
925
        upsampling_scaling_factor: int,
        act_fn: str,
926
        upsample_fn: str,
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
    ):
        super().__init__()

        layers = [
            nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
            get_activation(act_fn),
        ]

        for i, num_block in enumerate(num_blocks):
            is_final_block = i == (len(num_blocks) - 1)
            num_channels = block_out_channels[i]

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

            if not is_final_block:
943
                layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor, mode=upsample_fn))
944
945

            conv_out_channel = num_channels if not is_final_block else out_channels
Suraj Patil's avatar
Suraj Patil committed
946
947
948
949
950
951
952
953
954
            layers.append(
                nn.Conv2d(
                    num_channels,
                    conv_out_channel,
                    kernel_size=3,
                    padding=1,
                    bias=is_final_block,
                )
            )
955
956
957
958

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

959
    def forward(self, x: torch.Tensor) -> torch.Tensor:
960
        r"""The forward method of the `DecoderTiny` class."""
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
        # Clamp.
        x = torch.tanh(x / 3) * 3

        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
            else:
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)

        else:
            x = self.layers(x)

980
981
        # scale image from [0, 1] to [-1, 1] to match diffusers convention
        return x.mul(2).sub(1)