test_modeling_common.py 19.7 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import tempfile
18
import traceback
19
import unittest
20
import unittest.mock as mock
21
from typing import Dict, List, Tuple
22
23

import numpy as np
24
import requests_mock
25
import torch
26
from requests.exceptions import HTTPError
27

28
from diffusers.models import UNet2DConditionModel
29
from diffusers.training_utils import EMAModel
30
from diffusers.utils import logging, torch_device
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from diffusers.utils.testing_utils import CaptureLogger, require_torch_2, run_test_in_subprocess


# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
    error = None
    try:
        init_dict, model_class = in_queue.get(timeout=timeout)

        model = model_class(**init_dict)
        model.to(torch_device)
        model = torch.compile(model)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = model_class.from_pretrained(tmpdirname)
            new_model.to(torch_device)

        assert new_model.__class__ == model_class
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
56
57


58
class ModelUtilsTest(unittest.TestCase):
59
60
61
62
63
64
65
    def tearDown(self):
        super().tearDown()

        import diffusers

        diffusers.utils.import_utils._safetensors_available = True

66
67
68
69
70
71
72
    def test_accelerate_loading_error_message(self):
        with self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")

        # make sure that error message states what keys are missing
        assert "conv_out.bias" in str(error_context.exception)

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_model = UNet2DConditionModel.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
        )

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
            )

        for p1, p2 in zip(orig_model.parameters(), model.parameters()):
            if p1.data.ne(p2.data).sum() > 0:
                assert False, "Parameters not the same!"

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    def test_one_request_upon_cached(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        import diffusers

        diffusers.utils.import_utils._safetensors_available = False

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", cache_dir=tmpdirname
                )

            download_requests = [r.method for r in m.request_history]
            assert download_requests.count("HEAD") == 2, "2 HEAD requests one for config, one for model"
            assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"

            with requests_mock.mock(real_http=True) as m:
                UNet2DConditionModel.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
            assert (
                "HEAD" == cache_requests[0] and len(cache_requests) == 1
            ), "We should call only `model_info` to check for _commit hash and `send_telemetry`"

        diffusers.utils.import_utils._safetensors_available = True

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def test_weight_overwrite(self):
        with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
            UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
            )

        # make sure that error message states what keys are missing
        assert "Cannot load" in str(error_context.exception)

        with tempfile.TemporaryDirectory() as tmpdirname:
            model = UNet2DConditionModel.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="unet",
                cache_dir=tmpdirname,
                in_channels=9,
                low_cpu_mem_usage=False,
                ignore_mismatched_sizes=True,
            )

        assert model.config.in_channels == 9

152

153
class ModelTesterMixin:
154
    def test_from_save_pretrained(self):
155
156
157
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
158
159
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
160
161
162
163
164
165
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = self.model_class.from_pretrained(tmpdirname)
166
167
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
168
169
170
171
172
            new_model.to(torch_device)

        with torch.no_grad():
            image = model(**inputs_dict)
            if isinstance(image, dict):
173
                image = image.sample
174
175
176
177

            new_image = new_model(**inputs_dict)

            if isinstance(new_image, dict):
178
                new_image = new_image.sample
179
180
181

        max_diff = (image - new_image).abs().sum().item()
        self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    def test_getattr_is_correct(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        # save some things to test
        model.dummy_attribute = 5
        model.register_to_config(test_attribute=5)

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "dummy_attribute")
            assert getattr(model, "dummy_attribute") == 5
            assert model.dummy_attribute == 5

        # no warning should be thrown
        assert cap_logger.out == ""

        logger = logging.get_logger("diffusers.models.modeling_utils")
        # 30 for warning
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            assert hasattr(model, "save_pretrained")
            fn = model.save_pretrained
            fn_1 = getattr(model, "save_pretrained")

            assert fn == fn_1
        # no warning should be thrown
        assert cap_logger.out == ""

        # warning should be thrown
        with self.assertWarns(FutureWarning):
            assert model.test_attribute == 5

        with self.assertWarns(FutureWarning):
            assert getattr(model, "test_attribute") == 5

        with self.assertRaises(AttributeError) as error:
            model.does_not_exist

        assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"

226
227
228
229
    def test_from_save_pretrained_variant(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
230
231
        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()
232
233
234
235
236
237
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname, variant="fp16")
            new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
238
239
            if hasattr(new_model, "set_default_attn_processor"):
                new_model.set_default_attn_processor()
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

            # non-variant cannot be loaded
            with self.assertRaises(OSError) as error_context:
                self.model_class.from_pretrained(tmpdirname)

            # make sure that error message states what keys are missing
            assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)

            new_model.to(torch_device)

        with torch.no_grad():
            image = model(**inputs_dict)
            if isinstance(image, dict):
                image = image.sample

            new_image = new_model(**inputs_dict)

            if isinstance(new_image, dict):
                new_image = new_image.sample

        max_diff = (image - new_image).abs().sum().item()
        self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
262

263
    @require_torch_2
264
    def test_from_save_pretrained_dynamo(self):
265
266
267
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()
        inputs = [init_dict, self.model_class]
        run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
268

269
270
271
272
273
274
275
276
277
278
279
280
281
    def test_from_save_pretrained_dtype(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        for dtype in [torch.float32, torch.float16, torch.bfloat16]:
            if torch_device == "mps" and dtype == torch.bfloat16:
                continue
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.to(dtype)
                model.save_pretrained(tmpdirname)
282
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
283
                assert new_model.dtype == dtype
284
                new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype)
285
286
                assert new_model.dtype == dtype

287
    def test_determinism(self, expected_max_diff=1e-5):
288
289
290
291
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()
292

293
294
295
        with torch.no_grad():
            first = model(**inputs_dict)
            if isinstance(first, dict):
296
                first = first.sample
297
298
299

            second = model(**inputs_dict)
            if isinstance(second, dict):
300
                second = second.sample
301
302
303
304
305
306

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
307
        self.assertLessEqual(max_diff, expected_max_diff)
308
309
310
311
312
313
314
315
316
317
318

    def test_output(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
319
                output = output.sample
320
321
322
323
324

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    def test_forward_with_norm_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 16
        init_dict["block_out_channels"] = (16, 32)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

345
346
347
348
349
350
351
352
353
354
355
    def test_forward_signature(self):
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["sample", "timestep"]
        self.assertListEqual(arg_names[:2], expected_arg_names)

356
    def test_model_from_pretrained(self):
357
358
359
360
361
362
363
364
365
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        # test if the model can be loaded from the config
        # and has all the expected shape
        with tempfile.TemporaryDirectory() as tmpdirname:
366
367
            model.save_pretrained(tmpdirname)
            new_model = self.model_class.from_pretrained(tmpdirname)
368
369
370
            new_model.to(torch_device)
            new_model.eval()

371
        # check if all parameters shape are the same
372
373
374
375
376
377
378
379
380
        for param_name in model.state_dict().keys():
            param_1 = model.state_dict()[param_name]
            param_2 = new_model.state_dict()[param_name]
            self.assertEqual(param_1.shape, param_2.shape)

        with torch.no_grad():
            output_1 = model(**inputs_dict)

            if isinstance(output_1, dict):
381
                output_1 = output_1.sample
382
383
384
385

            output_2 = new_model(**inputs_dict)

            if isinstance(output_2, dict):
386
                output_2 = output_2.sample
387
388
389

        self.assertEqual(output_1.shape, output_2.shape)

390
    @unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
391
392
393
394
395
396
397
398
399
    def test_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
        output = model(**inputs_dict)

        if isinstance(output, dict):
400
            output = output.sample
401
402
403
404
405

        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()

406
    @unittest.skipIf(torch_device == "mps", "Training is not supported in mps")
407
408
409
410
411
412
    def test_ema_training(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.train()
413
        ema_model = EMAModel(model.parameters())
414
415
416
417

        output = model(**inputs_dict)

        if isinstance(output, dict):
418
            output = output.sample
419
420
421
422

        noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
        loss = torch.nn.functional.mse_loss(output, noise)
        loss.backward()
423
        ema_model.step(model.parameters())
424

425
    def test_outputs_equivalence(self):
426
        def set_nan_tensor_to_zero(t):
427
428
429
430
431
            # Temporary fallback until `aten::_index_put_impl_` is implemented in mps
            # Track progress in https://github.com/pytorch/pytorch/issues/77764
            device = t.device
            if device.type == "mps":
                t = t.to("cpu")
432
            t[t != t] = 0
433
            return t.to(device)
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

463
464
465
        with torch.no_grad():
            outputs_dict = model(**inputs_dict)
            outputs_tuple = model(**inputs_dict, return_dict=False)
466
467

        recursive_check(outputs_tuple, outputs_dict)
468

Anton Lozhkov's avatar
Anton Lozhkov committed
469
    @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def test_enable_disable_gradient_checkpointing(self):
        if not self.model_class._supports_gradient_checkpointing:
            return  # Skip test if model does not support gradient checkpointing

        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        # at init model should have gradient checkpointing disabled
        model = self.model_class(**init_dict)
        self.assertFalse(model.is_gradient_checkpointing)

        # check enable works
        model.enable_gradient_checkpointing()
        self.assertTrue(model.is_gradient_checkpointing)

        # check disable works
        model.disable_gradient_checkpointing()
        self.assertFalse(model.is_gradient_checkpointing)
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

    def test_deprecated_kwargs(self):
        has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
        has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0

        if has_kwarg_in_model_class and not has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
                " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                " [<deprecated_argument>]`"
            )

        if not has_kwarg_in_model_class and has_deprecated_kwarg:
            raise ValueError(
                f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
                " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
                f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
                " from `_deprecated_kwargs = [<deprecated_argument>]`"
            )