pipeline_pndm.py 3.96 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


17
from typing import Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
20
import torch

Partho's avatar
Partho committed
21
from ...models import UNet2DModel
22
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Partho's avatar
Partho committed
23
from ...schedulers import PNDMScheduler
Patrick von Platen's avatar
Patrick von Platen committed
24
25


Patrick von Platen's avatar
Patrick von Platen committed
26
class PNDMPipeline(DiffusionPipeline):
Kashif Rasul's avatar
Kashif Rasul committed
27
28
29
30
31
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
32
        unet (`UNet2DModel`): U-Net architecture to denoise the encoded image latents.
Kashif Rasul's avatar
Kashif Rasul committed
33
34
35
36
        scheduler ([`SchedulerMixin`]):
            The `PNDMScheduler` to be used in combination with `unet` to denoise the encoded image.
    """

Partho's avatar
Partho committed
37
38
39
40
    unet: UNet2DModel
    scheduler: PNDMScheduler

    def __init__(self, unet: UNet2DModel, scheduler: PNDMScheduler):
Patrick von Platen's avatar
Patrick von Platen committed
41
        super().__init__()
42
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
43

Patrick von Platen's avatar
Patrick von Platen committed
44
    @torch.no_grad()
Partho's avatar
Partho committed
45
46
47
48
49
50
    def __call__(
        self,
        batch_size: int = 1,
        num_inference_steps: int = 50,
        generator: Optional[torch.Generator] = None,
        output_type: Optional[str] = "pil",
51
        return_dict: bool = True,
Partho's avatar
Partho committed
52
        **kwargs,
53
    ) -> Union[ImagePipelineOutput, Tuple]:
Kashif Rasul's avatar
Kashif Rasul committed
54
55
        r"""
        Args:
56
57
58
59
60
            batch_size (`int`, `optional`, defaults to 1): The number of images to generate.
            num_inference_steps (`int`, `optional`, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            generator (`torch.Generator`, `optional`): A [torch
Kashif Rasul's avatar
Kashif Rasul committed
61
62
                generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
63
            output_type (`str`, `optional`, defaults to `"pil"`): The output format of the generate image. Choose
64
                between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
65
            return_dict (`bool`, `optional`, defaults to `True`): Whether or not to return a
Kashif Rasul's avatar
Kashif Rasul committed
66
                [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
67
68
69
70
71

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
Kashif Rasul's avatar
Kashif Rasul committed
72
        """
Patrick von Platen's avatar
Patrick von Platen committed
73
74
        # For more information on the sampling method you can take a look at Algorithm 2 of
        # the official paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77

        # Sample gaussian noise to begin loop
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
78
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
79
            generator=generator,
Patrick von Platen's avatar
Patrick von Platen committed
80
        )
Pedro Cuenca's avatar
Pedro Cuenca committed
81
        image = image.to(self.device)
Patrick von Platen's avatar
Patrick von Platen committed
82

83
        self.scheduler.set_timesteps(num_inference_steps)
hysts's avatar
hysts committed
84
        for t in self.progress_bar(self.scheduler.timesteps):
85
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
86

87
            image = self.scheduler.step(model_output, t, image).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
88

89
90
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
91
92
        if output_type == "pil":
            image = self.numpy_to_pil(image)
93

94
95
96
97
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)