test_flax_controlnet.py 4.74 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
YiYi Xu's avatar
YiYi Xu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
Dhruv Nair's avatar
Dhruv Nair committed
20
21
from diffusers.utils import is_flax_available, load_image
from diffusers.utils.testing_utils import require_flax, slow
YiYi Xu's avatar
YiYi Xu committed
22
23
24
25
26
27
28
29
30
31
32


if is_flax_available():
    import jax
    import jax.numpy as jnp
    from flax.jax_utils import replicate
    from flax.training.common_utils import shard


@slow
@require_flax
33
class FlaxControlNetPipelineIntegrationTests(unittest.TestCase):
YiYi Xu's avatar
YiYi Xu committed
34
35
36
37
38
39
40
41
42
43
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()

    def test_canny(self):
        controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
            "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.bfloat16
        )
        pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
44
            "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16
YiYi Xu's avatar
YiYi Xu committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        )
        params["controlnet"] = controlnet_params

        prompts = "bird"
        num_samples = jax.device_count()
        prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)

        canny_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )
        processed_image = pipe.prepare_image_inputs([canny_image] * num_samples)

        rng = jax.random.PRNGKey(0)
        rng = jax.random.split(rng, jax.device_count())

        p_params = replicate(params)
        prompt_ids = shard(prompt_ids)
        processed_image = shard(processed_image)

        images = pipe(
            prompt_ids=prompt_ids,
            image=processed_image,
            params=p_params,
            prng_seed=rng,
            num_inference_steps=50,
            jit=True,
        ).images
        assert images.shape == (jax.device_count(), 1, 768, 512, 3)

        images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
        image_slice = images[0, 253:256, 253:256, -1]

        output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
        expected_slice = jnp.array(
            [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078]
        )
        print(f"output_slice: {output_slice}")
        assert jnp.abs(output_slice - expected_slice).max() < 1e-2

    def test_pose(self):
        controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
            "lllyasviel/sd-controlnet-openpose", from_pt=True, dtype=jnp.bfloat16
        )
        pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
89
            "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16
YiYi Xu's avatar
YiYi Xu committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        )
        params["controlnet"] = controlnet_params

        prompts = "Chef in the kitchen"
        num_samples = jax.device_count()
        prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples)

        pose_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )
        processed_image = pipe.prepare_image_inputs([pose_image] * num_samples)

        rng = jax.random.PRNGKey(0)
        rng = jax.random.split(rng, jax.device_count())

        p_params = replicate(params)
        prompt_ids = shard(prompt_ids)
        processed_image = shard(processed_image)

        images = pipe(
            prompt_ids=prompt_ids,
            image=processed_image,
            params=p_params,
            prng_seed=rng,
            num_inference_steps=50,
            jit=True,
        ).images
        assert images.shape == (jax.device_count(), 1, 768, 512, 3)

        images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
        image_slice = images[0, 253:256, 253:256, -1]

        output_slice = jnp.asarray(jax.device_get(image_slice.flatten()))
        expected_slice = jnp.array(
            [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]]
        )
        print(f"output_slice: {output_slice}")
        assert jnp.abs(output_slice - expected_slice).max() < 1e-2