train_dreambooth_lora.py 54.4 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
Will Berman's avatar
Will Berman committed
17
import gc
18
import hashlib
19
import itertools
20
21
22
23
24
25
import logging
import math
import os
import warnings
from pathlib import Path

26
import numpy as np
27
28
29
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
30
31
32
from torch.utils.data import Dataset

import diffusers
33
34
35
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
36
from accelerate.utils import ProjectConfiguration, set_seed
37
38
39
40
41
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
42
    StableDiffusionPipeline,
43
44
    UNet2DConditionModel,
)
45
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin
Will Berman's avatar
Will Berman committed
46
47
48
49
50
51
52
from diffusers.models.attention_processor import (
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    LoRAAttnAddedKVProcessor,
    LoRAAttnProcessor,
    SlicedAttnAddedKVProcessor,
)
53
from diffusers.optimization import get_scheduler
54
from diffusers.utils import TEXT_ENCODER_TARGET_MODULES, check_min_version, is_wandb_available
55
from diffusers.utils.import_utils import is_xformers_available
56
57
58
59
60
61
62
from huggingface_hub import create_repo, upload_folder
from packaging import version
from PIL import Image
from PIL.ImageOps import exif_transpose
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
63
64
65


# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
66
check_min_version("0.17.0.dev0")
67
68
69
70

logger = get_logger(__name__)


71
def save_model_card(repo_id: str, images=None, base_model=str, train_text_encoder=False, prompt=str, repo_folder=None):
Patrick von Platen's avatar
Patrick von Platen committed
72
73
74
75
76
77
78
79
80
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
81
instance_prompt: {prompt}
Patrick von Platen's avatar
Patrick von Platen committed
82
83
84
85
86
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
87
- lora
Patrick von Platen's avatar
Patrick von Platen committed
88
89
90
91
inference: true
---
    """
    model_card = f"""
92
# LoRA DreamBooth - {repo_id}
Patrick von Platen's avatar
Patrick von Platen committed
93

hysts's avatar
hysts committed
94
These are LoRA adaption weights for {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. \n
Patrick von Platen's avatar
Patrick von Platen committed
95
{img_str}
96
97

LoRA for the text encoder was enabled: {train_text_encoder}.
Patrick von Platen's avatar
Patrick von Platen committed
98
99
100
101
102
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
Will Berman's avatar
Will Berman committed
119
120
121
122
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        required=True,
        help="The prompt with identifier specifying the instance",
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=50,
        help=(
            "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="lora-dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
patil-suraj's avatar
patil-suraj committed
230
231
232
233
234
235
236
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
237
    )
238
239
240
241
242
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
266
    parser.add_argument(
267
        "--checkpoints_total_limit",
268
269
270
271
272
273
274
275
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more docs"
        ),
    )
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
327
328
329
330
331
332
333
334
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
Will Berman's avatar
Will Berman committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
    else:
        # logger is not available yet
        if args.class_data_dir is not None:
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
        if args.class_prompt is not None:
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")

Will Berman's avatar
Will Berman committed
442
443
444
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
461
        class_num=None,
462
463
        size=512,
        center_crop=False,
Will Berman's avatar
Will Berman committed
464
465
466
        encoder_hidden_states=None,
        instance_prompt_encoder_hidden_states=None,
        tokenizer_max_length=None,
467
468
469
470
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
Will Berman's avatar
Will Berman committed
471
472
473
        self.encoder_hidden_states = encoder_hidden_states
        self.instance_prompt_encoder_hidden_states = instance_prompt_encoder_hidden_states
        self.tokenizer_max_length = tokenizer_max_length
474
475
476
477
478
479
480
481
482
483
484
485
486
487

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
            raise ValueError("Instance images root doesn't exists.")

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = list(self.class_data_root.iterdir())
488
489
490
491
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
512
513
        instance_image = exif_transpose(instance_image)

514
515
516
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
Will Berman's avatar
Will Berman committed
517
518
519
520
521
522
523
524
525

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
526
527
528

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
529
530
            class_image = exif_transpose(class_image)

531
532
533
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
Will Berman's avatar
Will Berman committed
534
535
536
537
538
539
540
541
542

            if self.instance_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.instance_prompt_encoder_hidden_states
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
543
544
545
546
547

        return example


def collate_fn(examples, with_prior_preservation=False):
Will Berman's avatar
Will Berman committed
548
549
    has_attention_mask = "instance_attention_mask" in examples[0]

550
551
552
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

Will Berman's avatar
Will Berman committed
553
554
555
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

556
557
558
559
560
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]
Will Berman's avatar
Will Berman committed
561
562
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]
563
564
565
566
567
568
569
570
571
572

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
Will Berman's avatar
Will Berman committed
573
574
575
576

    if has_attention_mask:
        batch["attention_mask"] = attention_mask

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    return batch


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


Will Berman's avatar
Will Berman committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


631
632
633
def main(args):
    logging_dir = Path(args.output_dir, args.logging_dir)

634
    accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)
635

636
637
638
639
640
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        logging_dir=logging_dir,
641
        project_config=accelerator_project_config,
642
643
644
645
646
647
648
649
650
    )

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
651
652
653
654
655
656
657
    # TODO (sayakpaul): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Generate class images if prior preservation is enabled.
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
            pipeline = DiffusionPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
724
        if args.output_dir is not None:
725
726
            os.makedirs(args.output_dir, exist_ok=True)

727
728
729
730
731
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
    # Load the tokenizer
    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
    elif args.pretrained_model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
            use_fast=False,
        )

    # import correct text encoder class
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)

    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder = text_encoder_cls.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
751
    try:
Will Berman's avatar
Will Berman committed
752
753
754
        vae = AutoencoderKL.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
        )
755
756
757
    except OSError:
        # IF does not have a VAE so let's just set it to None
        # We don't have to error out here
Will Berman's avatar
Will Berman committed
758
759
        vae = None

760
761
762
763
764
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
    )

    # We only train the additional adapter LoRA layers
Will Berman's avatar
Will Berman committed
765
766
    if vae is not None:
        vae.requires_grad_(False)
767
768
769
770
771
772
773
774
775
776
777
778
779
    text_encoder.requires_grad_(False)
    unet.requires_grad_(False)

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move unet, vae and text_encoder to device and cast to weight_dtype
    unet.to(accelerator.device, dtype=weight_dtype)
Will Berman's avatar
Will Berman committed
780
781
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)
782
783
784
785
    text_encoder.to(accelerator.device, dtype=weight_dtype)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
786
787
788
789
790
791
792
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # now we will add new LoRA weights to the attention layers
    # It's important to realize here how many attention weights will be added and of which sizes
    # The sizes of the attention layers consist only of two different variables:
    # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`.
    # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`.

    # Let's first see how many attention processors we will have to set.
    # For Stable Diffusion, it should be equal to:
    # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12
    # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2
    # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18
    # => 32 layers

    # Set correct lora layers
811
    unet_lora_attn_procs = {}
Will Berman's avatar
Will Berman committed
812
    for name, attn_processor in unet.attn_processors.items():
813
814
815
816
817
818
819
820
821
822
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]

Will Berman's avatar
Will Berman committed
823
824
825
826
827
828
        if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)):
            lora_attn_processor_class = LoRAAttnAddedKVProcessor
        else:
            lora_attn_processor_class = LoRAAttnProcessor

        unet_lora_attn_procs[name] = lora_attn_processor_class(
829
830
            hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
        )
831

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
    unet.set_attn_processor(unet_lora_attn_procs)
    unet_lora_layers = AttnProcsLayers(unet.attn_processors)

    # The text encoder comes from 🤗 transformers, so we cannot directly modify it.
    # So, instead, we monkey-patch the forward calls of its attention-blocks. For this,
    # we first load a dummy pipeline with the text encoder and then do the monkey-patching.
    text_encoder_lora_layers = None
    if args.train_text_encoder:
        text_lora_attn_procs = {}
        for name, module in text_encoder.named_modules():
            if any(x in name for x in TEXT_ENCODER_TARGET_MODULES):
                text_lora_attn_procs[name] = LoRAAttnProcessor(
                    hidden_size=module.out_features, cross_attention_dim=None
                )
        text_encoder_lora_layers = AttnProcsLayers(text_lora_attn_procs)
        temp_pipeline = StableDiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path, text_encoder=text_encoder
        )
        temp_pipeline._modify_text_encoder(text_lora_attn_procs)
        text_encoder = temp_pipeline.text_encoder
        del temp_pipeline
853

854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        # there are only two options here. Either are just the unet attn processor layers
        # or there are the unet and text encoder atten layers
        unet_lora_layers_to_save = None
        text_encoder_lora_layers_to_save = None

        if args.train_text_encoder:
            text_encoder_keys = accelerator.unwrap_model(text_encoder_lora_layers).state_dict().keys()
        unet_keys = accelerator.unwrap_model(unet_lora_layers).state_dict().keys()

        for model in models:
            state_dict = model.state_dict()

            if (
                text_encoder_lora_layers is not None
                and text_encoder_keys is not None
                and state_dict.keys() == text_encoder_keys
            ):
                # text encoder
                text_encoder_lora_layers_to_save = state_dict
            elif state_dict.keys() == unet_keys:
                # unet
                unet_lora_layers_to_save = state_dict

            # make sure to pop weight so that corresponding model is not saved again
            weights.pop()

        LoraLoaderMixin.save_lora_weights(
            output_dir,
            unet_lora_layers=unet_lora_layers_to_save,
            text_encoder_lora_layers=text_encoder_lora_layers_to_save,
        )

    def load_model_hook(models, input_dir):
        # Note we DON'T pass the unet and text encoder here an purpose
        # so that the we don't accidentally override the LoRA layers of
        # unet_lora_layers and text_encoder_lora_layers which are stored in `models`
        # with new torch.nn.Modules / weights. We simply use the pipeline class as
        # an easy way to load the lora checkpoints
        temp_pipeline = DiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            revision=args.revision,
            torch_dtype=weight_dtype,
        )
        temp_pipeline.load_lora_weights(input_dir)

        # load lora weights into models
        models[0].load_state_dict(AttnProcsLayers(temp_pipeline.unet.attn_processors).state_dict())
        if len(models) > 1:
            models[1].load_state_dict(AttnProcsLayers(temp_pipeline.text_encoder_lora_attn_procs).state_dict())

        # delete temporary pipeline and pop models
        del temp_pipeline
        for _ in range(len(models)):
            models.pop()

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

    # Optimizer creation
938
939
940
941
942
    params_to_optimize = (
        itertools.chain(unet_lora_layers.parameters(), text_encoder_lora_layers.parameters())
        if args.train_text_encoder
        else unet_lora_layers.parameters()
    )
943
    optimizer = optimizer_class(
944
        params_to_optimize,
945
946
947
948
949
950
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Will Berman's avatar
Will Berman committed
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

        if args.instance_prompt is not None:
            pre_computed_instance_prompt_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        else:
            pre_computed_instance_prompt_encoder_hidden_states = None

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
        pre_computed_instance_prompt_encoder_hidden_states = None

989
990
991
992
993
994
    # Dataset and DataLoaders creation:
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
995
        class_num=args.num_class_images,
996
997
998
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
Will Berman's avatar
Will Berman committed
999
1000
1001
        encoder_hidden_states=pre_computed_encoder_hidden_states,
        instance_prompt_encoder_hidden_states=pre_computed_instance_prompt_encoder_hidden_states,
        tokenizer_max_length=args.tokenizer_max_length,
1002
1003
1004
1005
1006
1007
1008
    )

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
1009
        num_workers=args.dataloader_num_workers,
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
1029
1030
1031
1032
1033
1034
1035
1036
    if args.train_text_encoder:
        unet_lora_layers, text_encoder_lora_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet_lora_layers, text_encoder_lora_layers, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet_lora_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet_lora_layers, optimizer, train_dataloader, lr_scheduler
        )
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth-lora", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
1088
1089
1090
1091
1092
1093
1094

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
    progress_bar.set_description("Steps")

    for epoch in range(first_epoch, args.num_train_epochs):
        unet.train()
1095
1096
        if args.train_text_encoder:
            text_encoder.train()
1097
1098
1099
1100
1101
1102
1103
1104
        for step, batch in enumerate(train_dataloader):
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

            with accelerator.accumulate(unet):
Will Berman's avatar
Will Berman committed
1105
1106
1107
1108
1109
1110
1111
1112
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)

                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(pixel_values).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values
1113
1114

                # Sample noise that we'll add to the latents
Will Berman's avatar
Will Berman committed
1115
1116
                noise = torch.randn_like(model_input)
                bsz = model_input.shape[0]
1117
                # Sample a random timestep for each image
Will Berman's avatar
Will Berman committed
1118
1119
1120
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1121
1122
                timesteps = timesteps.long()

Will Berman's avatar
Will Berman committed
1123
                # Add noise to the model input according to the noise magnitude at each timestep
1124
                # (this is the forward diffusion process)
Will Berman's avatar
Will Berman committed
1125
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1126
1127

                # Get the text embedding for conditioning
Will Berman's avatar
Will Berman committed
1128
1129
1130
1131
1132
1133
1134
1135
1136
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1137
1138

                # Predict the noise residual
Will Berman's avatar
Will Berman committed
1139
1140
1141
1142
1143
1144
1145
                model_pred = unet(noisy_model_input, timesteps, encoder_hidden_states).sample

                # if model predicts variance, throw away the prediction. we will only train on the
                # simplified training objective. This means that all schedulers using the fine tuned
                # model must be configured to use one of the fixed variance variance types.
                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1146
1147
1148
1149
1150

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
Will Berman's avatar
Will Berman committed
1151
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                if args.with_prior_preservation:
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)

                    # Compute instance loss
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                accelerator.backward(loss)
                if accelerator.sync_gradients:
1173
1174
1175
1176
1177
                    params_to_clip = (
                        itertools.chain(unet_lora_layers.parameters(), text_encoder_lora_layers.parameters())
                        if args.train_text_encoder
                        else unet_lora_layers.parameters()
                    )
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1188
1189
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1190
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1191
                        accelerator.save_state(save_path)
1192
1193
1194
1195
1196
1197
1198
1199
1200
                        logger.info(f"Saved state to {save_path}")

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        if accelerator.is_main_process:
            if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
                logger.info(
                    f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
                    f" {args.validation_prompt}."
                )
                # create pipeline
                pipeline = DiffusionPipeline.from_pretrained(
                    args.pretrained_model_name_or_path,
                    unet=accelerator.unwrap_model(unet),
Will Berman's avatar
Will Berman committed
1211
                    text_encoder=None if args.pre_compute_text_embeddings else accelerator.unwrap_model(text_encoder),
1212
1213
1214
                    revision=args.revision,
                    torch_dtype=weight_dtype,
                )
Will Berman's avatar
Will Berman committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230

                # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
                scheduler_args = {}

                if "variance_type" in pipeline.scheduler.config:
                    variance_type = pipeline.scheduler.config.variance_type

                    if variance_type in ["learned", "learned_range"]:
                        variance_type = "fixed_small"

                    scheduler_args["variance_type"] = variance_type

                pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
                    pipeline.scheduler.config, **scheduler_args
                )

1231
1232
1233
1234
                pipeline = pipeline.to(accelerator.device)
                pipeline.set_progress_bar_config(disable=True)

                # run inference
Will Berman's avatar
Will Berman committed
1235
1236
1237
1238
1239
1240
1241
1242
                generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
                if args.pre_compute_text_embeddings:
                    pipeline_args = {
                        "prompt_embeds": validation_prompt_encoder_hidden_states,
                        "negative_prompt_embeds": validation_prompt_negative_prompt_embeds,
                    }
                else:
                    pipeline_args = {"prompt": args.validation_prompt}
1243
                images = [
Will Berman's avatar
Will Berman committed
1244
                    pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
                ]

                for tracker in accelerator.trackers:
                    if tracker.name == "tensorboard":
                        np_images = np.stack([np.asarray(img) for img in images])
                        tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
                    if tracker.name == "wandb":
                        tracker.log(
                            {
                                "validation": [
                                    wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                    for i, image in enumerate(images)
                                ]
                            }
                        )

                del pipeline
                torch.cuda.empty_cache()
1263
1264
1265
1266
1267

    # Save the lora layers
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        unet = unet.to(torch.float32)
1268
1269
        unet_lora_layers = accelerator.unwrap_model(unet_lora_layers)

Will Berman's avatar
Will Berman committed
1270
1271
        if text_encoder is not None:
            text_encoder = text_encoder.to(torch.float32)
1272
1273
            text_encoder_lora_layers = accelerator.unwrap_model(text_encoder_lora_layers)

1274
1275
1276
1277
1278
        LoraLoaderMixin.save_lora_weights(
            save_directory=args.output_dir,
            unet_lora_layers=unet_lora_layers,
            text_encoder_lora_layers=text_encoder_lora_layers,
        )
1279

Patrick von Platen's avatar
Patrick von Platen committed
1280
1281
1282
1283
1284
        # Final inference
        # Load previous pipeline
        pipeline = DiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path, revision=args.revision, torch_dtype=weight_dtype
        )
Will Berman's avatar
Will Berman committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)

Patrick von Platen's avatar
Patrick von Platen committed
1299
1300
1301
        pipeline = pipeline.to(accelerator.device)

        # load attention processors
1302
        pipeline.load_lora_weights(args.output_dir)
Patrick von Platen's avatar
Patrick von Platen committed
1303
1304

        # run inference
1305
        images = []
1306
1307
        if args.validation_prompt and args.num_validation_images > 0:
            generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
1308
1309
1310
1311
            images = [
                pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
                for _ in range(args.num_validation_images)
            ]
Patrick von Platen's avatar
Patrick von Platen committed
1312

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
            for tracker in accelerator.trackers:
                if tracker.name == "tensorboard":
                    np_images = np.stack([np.asarray(img) for img in images])
                    tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
                if tracker.name == "wandb":
                    tracker.log(
                        {
                            "test": [
                                wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                for i, image in enumerate(images)
                            ]
                        }
                    )
1326

Patrick von Platen's avatar
Patrick von Platen committed
1327
1328
        if args.push_to_hub:
            save_model_card(
1329
                repo_id,
Patrick von Platen's avatar
Patrick von Platen committed
1330
1331
                images=images,
                base_model=args.pretrained_model_name_or_path,
1332
                train_text_encoder=args.train_text_encoder,
Patrick von Platen's avatar
Patrick von Platen committed
1333
1334
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1335
            )
1336
1337
1338
1339
1340
1341
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1342
1343
1344
1345
1346
1347
1348

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)