transformer_sd3.py 8.39 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from contextlib import nullcontext
15
16
17
18
19
from typing import Dict

from ..models.attention_processor import SD3IPAdapterJointAttnProcessor2_0
from ..models.embeddings import IPAdapterTimeImageProjection
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
20
from ..utils import is_accelerate_available, is_torch_version, logging
21
from ..utils.torch_utils import empty_device_cache
22
23
24


logger = logging.get_logger(__name__)
25
26
27
28
29


class SD3Transformer2DLoadersMixin:
    """Load IP-Adapters and LoRA layers into a `[SD3Transformer2DModel]`."""

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    def _convert_ip_adapter_attn_to_diffusers(
        self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT
    ) -> Dict:
        if low_cpu_mem_usage:
            if is_accelerate_available():
                from accelerate import init_empty_weights

            else:
                low_cpu_mem_usage = False
                logger.warning(
                    "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                    " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                    " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                    " install accelerate\n```\n."
                )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )
51
52
53
54

        # IP-Adapter cross attention parameters
        hidden_size = self.config.attention_head_dim * self.config.num_attention_heads
        ip_hidden_states_dim = self.config.attention_head_dim * self.config.num_attention_heads
55
        timesteps_emb_dim = state_dict["0.norm_ip.linear.weight"].shape[1]
56
57
58
59

        # Dict where key is transformer layer index, value is attention processor's state dict
        # ip_adapter state dict keys example: "0.norm_ip.linear.weight"
        layer_state_dict = {idx: {} for idx in range(len(self.attn_processors))}
60
        for key, weights in state_dict.items():
61
62
63
            idx, name = key.split(".", maxsplit=1)
            layer_state_dict[int(idx)][name] = weights

64
        # Create IP-Adapter attention processor & load state_dict
65
        attn_procs = {}
66
        init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
67
        for idx, name in enumerate(self.attn_processors.keys()):
68
69
70
71
72
73
74
            with init_context():
                attn_procs[name] = SD3IPAdapterJointAttnProcessor2_0(
                    hidden_size=hidden_size,
                    ip_hidden_states_dim=ip_hidden_states_dim,
                    head_dim=self.config.attention_head_dim,
                    timesteps_emb_dim=timesteps_emb_dim,
                )
75
76
77
78

            if not low_cpu_mem_usage:
                attn_procs[name].load_state_dict(layer_state_dict[idx], strict=True)
            else:
79
                device_map = {"": self.device}
80
                load_model_dict_into_meta(
81
                    attn_procs[name], layer_state_dict[idx], device_map=device_map, dtype=self.dtype
82
83
                )

84
85
        empty_device_cache()

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        return attn_procs

    def _convert_ip_adapter_image_proj_to_diffusers(
        self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT
    ) -> IPAdapterTimeImageProjection:
        if low_cpu_mem_usage:
            if is_accelerate_available():
                from accelerate import init_empty_weights

            else:
                low_cpu_mem_usage = False
                logger.warning(
                    "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                    " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                    " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                    " install accelerate\n```\n."
                )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        init_context = init_empty_weights if low_cpu_mem_usage else nullcontext

        # Convert to diffusers
        updated_state_dict = {}
        for key, value in state_dict.items():
            # InstantX/SD3.5-Large-IP-Adapter
            if key.startswith("layers."):
                idx = key.split(".")[1]
                key = key.replace(f"layers.{idx}.0.norm1", f"layers.{idx}.ln0")
                key = key.replace(f"layers.{idx}.0.norm2", f"layers.{idx}.ln1")
                key = key.replace(f"layers.{idx}.0.to_q", f"layers.{idx}.attn.to_q")
                key = key.replace(f"layers.{idx}.0.to_kv", f"layers.{idx}.attn.to_kv")
                key = key.replace(f"layers.{idx}.0.to_out", f"layers.{idx}.attn.to_out.0")
                key = key.replace(f"layers.{idx}.1.0", f"layers.{idx}.adaln_norm")
                key = key.replace(f"layers.{idx}.1.1", f"layers.{idx}.ff.net.0.proj")
                key = key.replace(f"layers.{idx}.1.3", f"layers.{idx}.ff.net.2")
                key = key.replace(f"layers.{idx}.2.1", f"layers.{idx}.adaln_proj")
            updated_state_dict[key] = value
128

129
        # Image projection parameters
130
131
132
133
134
135
        embed_dim = updated_state_dict["proj_in.weight"].shape[1]
        output_dim = updated_state_dict["proj_out.weight"].shape[0]
        hidden_dim = updated_state_dict["proj_in.weight"].shape[0]
        heads = updated_state_dict["layers.0.attn.to_q.weight"].shape[0] // 64
        num_queries = updated_state_dict["latents"].shape[1]
        timestep_in_dim = updated_state_dict["time_embedding.linear_1.weight"].shape[1]
136
137

        # Image projection
138
139
140
141
142
143
144
145
146
        with init_context():
            image_proj = IPAdapterTimeImageProjection(
                embed_dim=embed_dim,
                output_dim=output_dim,
                hidden_dim=hidden_dim,
                heads=heads,
                num_queries=num_queries,
                timestep_in_dim=timestep_in_dim,
            )
147
148

        if not low_cpu_mem_usage:
149
            image_proj.load_state_dict(updated_state_dict, strict=True)
150
        else:
151
152
            device_map = {"": self.device}
            load_model_dict_into_meta(image_proj, updated_state_dict, device_map=device_map, dtype=self.dtype)
153
            empty_device_cache()
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

        return image_proj

    def _load_ip_adapter_weights(self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT) -> None:
        """Sets IP-Adapter attention processors, image projection, and loads state_dict.

        Args:
            state_dict (`Dict`):
                State dict with keys "ip_adapter", which contains parameters for attention processors, and
                "image_proj", which contains parameters for image projection net.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
        """

        attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dict["ip_adapter"], low_cpu_mem_usage)
        self.set_attn_processor(attn_procs)

        self.image_proj = self._convert_ip_adapter_image_proj_to_diffusers(state_dict["image_proj"], low_cpu_mem_usage)