test_pipelines_auto.py 11.9 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
17
18
import os
import shutil
YiYi Xu's avatar
YiYi Xu committed
19
20
import unittest
from collections import OrderedDict
21
from pathlib import Path
YiYi Xu's avatar
YiYi Xu committed
22
23
24
25
26
27
28
29

import torch

from diffusers import (
    AutoPipelineForImage2Image,
    AutoPipelineForInpainting,
    AutoPipelineForText2Image,
    ControlNetModel,
30
    DiffusionPipeline,
YiYi Xu's avatar
YiYi Xu committed
31
32
33
34
35
36
)
from diffusers.pipelines.auto_pipeline import (
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
    AUTO_INPAINT_PIPELINES_MAPPING,
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
)
Dhruv Nair's avatar
Dhruv Nair committed
37
from diffusers.utils.testing_utils import slow
YiYi Xu's avatar
YiYi Xu committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87


PRETRAINED_MODEL_REPO_MAPPING = OrderedDict(
    [
        ("stable-diffusion", "runwayml/stable-diffusion-v1-5"),
        ("if", "DeepFloyd/IF-I-XL-v1.0"),
        ("kandinsky", "kandinsky-community/kandinsky-2-1"),
        ("kandinsky22", "kandinsky-community/kandinsky-2-2-decoder"),
    ]
)


class AutoPipelineFastTest(unittest.TestCase):
    def test_from_pipe_consistent(self):
        pipe = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
        )
        original_config = dict(pipe.config)

        pipe = AutoPipelineForImage2Image.from_pipe(pipe)
        assert dict(pipe.config) == original_config

        pipe = AutoPipelineForText2Image.from_pipe(pipe)
        assert dict(pipe.config) == original_config

    def test_from_pipe_override(self):
        pipe = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
        )

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, requires_safety_checker=True)
        assert pipe.config.requires_safety_checker is True

        pipe = AutoPipelineForText2Image.from_pipe(pipe, requires_safety_checker=True)
        assert pipe.config.requires_safety_checker is True

    def test_from_pipe_consistent_sdxl(self):
        pipe = AutoPipelineForImage2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-xl-pipe",
            requires_aesthetics_score=True,
            force_zeros_for_empty_prompt=False,
        )

        original_config = dict(pipe.config)

        pipe = AutoPipelineForText2Image.from_pipe(pipe)
        pipe = AutoPipelineForImage2Image.from_pipe(pipe)

        assert dict(pipe.config) == original_config

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    def test_kwargs_local_files_only(self):
        repo = "hf-internal-testing/tiny-stable-diffusion-torch"
        tmpdirname = DiffusionPipeline.download(repo)
        tmpdirname = Path(tmpdirname)

        # edit commit_id to so that it's not the latest commit
        commit_id = tmpdirname.name
        new_commit_id = commit_id + "hug"

        ref_dir = tmpdirname.parent.parent / "refs/main"
        with open(ref_dir, "w") as f:
            f.write(new_commit_id)

        new_tmpdirname = tmpdirname.parent / new_commit_id
        os.rename(tmpdirname, new_tmpdirname)

        try:
            AutoPipelineForText2Image.from_pretrained(repo, local_files_only=True)
        except OSError:
            assert False, "not able to load local files"

        shutil.rmtree(tmpdirname.parent.parent)

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    def test_from_pipe_controlnet_text2img(self):
        pipe = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_img2img(self):
        pipe = AutoPipelineForImage2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionImg2ImgPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_inpaint(self):
        pipe = AutoPipelineForInpainting.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForInpainting.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForInpainting.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionInpaintPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_new_task(self):
        pipe_text2img = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_text2img, controlnet=controlnet)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

        pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img, controlnet=None)
        assert pipe_inpaint.__class__.__name__ == "StableDiffusionInpaintPipeline"
        assert "controlnet" not in pipe_inpaint.components

YiYi Xu's avatar
YiYi Xu committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

@slow
class AutoPipelineIntegrationTest(unittest.TestCase):
    def test_pipe_auto(self):
        for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
            # test txt2img
            pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
                model_repo, variant="fp16", torch_dtype=torch.float16
            )
            self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_txt2img)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_txt2img)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            if "kandinsky" not in model_name:
                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_txt2img)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

            del pipe_txt2img, pipe_to
            gc.collect()

            # test img2img

            pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
                model_repo, variant="fp16", torch_dtype=torch.float16
            )
            self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_img2img)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_img2img)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            if "kandinsky" not in model_name:
                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_img2img)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

            del pipe_img2img, pipe_to
            gc.collect()

            # test inpaint

            if "kandinsky" not in model_name:
                pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
                    model_repo, variant="fp16", torch_dtype=torch.float16
                )
                self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForText2Image.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

                del pipe_inpaint, pipe_to
                gc.collect()

    def test_from_pipe_consistent(self):
        for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
            if model_name in ["kandinsky", "kandinsky22"]:
                auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image]
            else:
                auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting]

            # test from_pretrained
            for pipe_from_class in auto_pipes:
                pipe_from = pipe_from_class.from_pretrained(model_repo, variant="fp16", torch_dtype=torch.float16)
                pipe_from_config = dict(pipe_from.config)

                for pipe_to_class in auto_pipes:
                    pipe_to = pipe_to_class.from_pipe(pipe_from)
                    self.assertEqual(dict(pipe_to.config), pipe_from_config)

                del pipe_from, pipe_to
                gc.collect()

    def test_controlnet(self):
        # test from_pretrained
        model_repo = "runwayml/stable-diffusion-v1-5"
        controlnet_repo = "lllyasviel/sd-controlnet-canny"

        controlnet = ControlNetModel.from_pretrained(controlnet_repo, torch_dtype=torch.float16)

        pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        # test from_pipe
        for pipe_from in [pipe_txt2img, pipe_img2img, pipe_inpaint]:
            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_txt2img.config))

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_img2img.config))

            pipe_to = AutoPipelineForInpainting.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_inpaint.config))