test_dit.py 5.27 KB
Newer Older
Kashif Rasul's avatar
Kashif Rasul committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Kashif Rasul's avatar
Kashif Rasul committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, Transformer2DModel
Dhruv Nair's avatar
Dhruv Nair committed
23
24
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, nightly, require_torch_gpu, torch_device
Kashif Rasul's avatar
Kashif Rasul committed
25

26
from ..pipeline_params import (
27
28
29
    CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
    CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
30
from ..test_pipelines_common import PipelineTesterMixin
Kashif Rasul's avatar
Kashif Rasul committed
31
32


33
enable_full_determinism()
Kashif Rasul's avatar
Kashif Rasul committed
34
35
36
37


class DiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = DiTPipeline
38
39
40
41
42
43
44
45
    params = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {
        "latents",
        "num_images_per_prompt",
        "callback",
        "callback_steps",
    }
    batch_params = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
Kashif Rasul's avatar
Kashif Rasul committed
46
47
48
49

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = Transformer2DModel(
50
            sample_size=16,
Kashif Rasul's avatar
Kashif Rasul committed
51
            num_layers=2,
52
53
            patch_size=4,
            attention_head_dim=8,
Kashif Rasul's avatar
Kashif Rasul committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
            num_attention_heads=2,
            in_channels=4,
            out_channels=8,
            attention_bias=True,
            activation_fn="gelu-approximate",
            num_embeds_ada_norm=1000,
            norm_type="ada_norm_zero",
            norm_elementwise_affine=False,
        )
        vae = AutoencoderKL()
        scheduler = DDIMScheduler()
        components = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler}
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "class_labels": [1],
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "numpy",
        }
        return inputs

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

93
        self.assertEqual(image.shape, (1, 16, 16, 3))
94
        expected_slice = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457])
Kashif Rasul's avatar
Kashif Rasul committed
95
96
97
98
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_inference_batch_single_identical(self):
Kashif Rasul's avatar
Kashif Rasul committed
99
100
101
102
103
104
105
106
        self._test_inference_batch_single_identical(relax_max_difference=True, expected_max_diff=1e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
Kashif Rasul's avatar
Kashif Rasul committed
107
108


Dhruv Nair's avatar
Dhruv Nair committed
109
@nightly
Kashif Rasul's avatar
Kashif Rasul committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
@require_torch_gpu
class DiTPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_dit_256(self):
        generator = torch.manual_seed(0)

        pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256")
        pipe.to("cuda")

        words = ["vase", "umbrella", "white shark", "white wolf"]
        ids = pipe.get_label_ids(words)

        images = pipe(ids, generator=generator, num_inference_steps=40, output_type="np").images

        for word, image in zip(words, images):
            expected_image = load_numpy(
                f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy"
            )
Kashif Rasul's avatar
Kashif Rasul committed
132
            assert np.abs((expected_image - image).max()) < 1e-2
Kashif Rasul's avatar
Kashif Rasul committed
133

134
135
    def test_dit_512(self):
        pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512")
Kashif Rasul's avatar
Kashif Rasul committed
136
137
138
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

139
        words = ["vase", "umbrella"]
Kashif Rasul's avatar
Kashif Rasul committed
140
141
        ids = pipe.get_label_ids(words)

142
        generator = torch.manual_seed(0)
Kashif Rasul's avatar
Kashif Rasul committed
143
144
145
146
147
        images = pipe(ids, generator=generator, num_inference_steps=25, output_type="np").images

        for word, image in zip(words, images):
            expected_image = load_numpy(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
148
                f"/dit/{word}_512.npy"
Kashif Rasul's avatar
Kashif Rasul committed
149
            )
150

151
            assert np.abs((expected_image - image).max()) < 1e-1