test_alt_diffusion_img2img.py 9.84 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Suraj Patil's avatar
Suraj Patil committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from transformers import XLMRobertaTokenizer
Suraj Patil's avatar
Suraj Patil committed
23

YiYi Xu's avatar
YiYi Xu committed
24
25
26
27
28
29
30
from diffusers import (
    AltDiffusionImg2ImgPipeline,
    AutoencoderKL,
    PNDMScheduler,
    UNet2DConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
Suraj Patil's avatar
Suraj Patil committed
31
32
33
34
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
    RobertaSeriesConfig,
    RobertaSeriesModelWithTransformation,
)
Dhruv Nair's avatar
Dhruv Nair committed
35
36
37
38
39
40
41
42
43
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_numpy,
    nightly,
    require_torch_gpu,
    torch_device,
)
Suraj Patil's avatar
Suraj Patil committed
44
45


46
enable_full_determinism()
Suraj Patil's avatar
Suraj Patil committed
47
48


49
class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    @property
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

    @property
    def dummy_cond_unet(self):
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

    @property
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = RobertaSeriesConfig(
            hidden_size=32,
            project_dim=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=5006,
        )
        return RobertaSeriesModelWithTransformation(config)

    @property
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

    def test_stable_diffusion_img2img_default_case(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
        tokenizer.model_max_length = 77

        init_image = self.dummy_image.to(device)
133
        init_image = init_image / 2 + 0.5
Suraj Patil's avatar
Suraj Patil committed
134
135
136
137
138
139
140
141
142
143
144

        # make sure here that pndm scheduler skips prk
        alt_pipe = AltDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )
145
        alt_pipe.image_processor = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=True)
Suraj Patil's avatar
Suraj Patil committed
146
147
148
149
150
151
152
153
154
155
156
        alt_pipe = alt_pipe.to(device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=device).manual_seed(0)
        output = alt_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
157
            image=init_image,
Suraj Patil's avatar
Suraj Patil committed
158
159
160
161
162
163
164
165
166
167
168
        )

        image = output.images

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_tuple = alt_pipe(
            [prompt],
            generator=generator,
            guidance_scale=6.0,
            num_inference_steps=2,
            output_type="np",
169
            image=init_image,
Suraj Patil's avatar
Suraj Patil committed
170
171
172
173
174
175
176
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
177
        expected_slice = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499])
178

179
180
        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3
Suraj Patil's avatar
Suraj Patil committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_stable_diffusion_img2img_fp16(self):
        """Test that stable diffusion img2img works with fp16"""
        unet = self.dummy_cond_unet
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
        tokenizer.model_max_length = 77

        init_image = self.dummy_image.to(torch_device)

        # put models in fp16
        unet = unet.half()
        vae = vae.half()
        bert = bert.half()

        # make sure here that pndm scheduler skips prk
        alt_pipe = AltDiffusionImg2ImgPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )
YiYi Xu's avatar
YiYi Xu committed
209
        alt_pipe.image_processor = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=False)
Suraj Patil's avatar
Suraj Patil committed
210
211
212
213
        alt_pipe = alt_pipe.to(torch_device)
        alt_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
214
        generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
215
216
217
218
219
        image = alt_pipe(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
220
            image=init_image,
Suraj Patil's avatar
Suraj Patil committed
221
222
223
224
        ).images

        assert image.shape == (1, 32, 32, 3)

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    @unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
    def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        # resize to resolution that is divisible by 8 but not 16 or 32
        init_image = init_image.resize((760, 504))

        model_id = "BAAI/AltDiffusion"
        pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

245
        generator = torch.manual_seed(0)
246
247
248
249
250
251
252
253
254
255
256
257
258
        output = pipe(
            prompt=prompt,
            image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        image_slice = image[255:258, 383:386, -1]

        assert image.shape == (504, 760, 3)
259
260
        expected_slice = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000])

261
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
262

Suraj Patil's avatar
Suraj Patil committed
263

Dhruv Nair's avatar
Dhruv Nair committed
264
@nightly
Suraj Patil's avatar
Suraj Patil committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
@require_torch_gpu
class AltDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_stable_diffusion_img2img_pipeline_default(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy"
        )

        model_id = "BAAI/AltDiffusion"
        pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

294
        generator = torch.manual_seed(0)
Suraj Patil's avatar
Suraj Patil committed
295
296
        output = pipe(
            prompt=prompt,
297
            image=init_image,
Suraj Patil's avatar
Suraj Patil committed
298
299
300
301
302
303
304
305
306
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 768, 3)
        # img2img is flaky across GPUs even in fp32, so using MAE here
307
        assert np.abs(expected_image - image).max() < 1e-2