test_models_unet_3d_condition.py 15.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
import os
import tempfile
18
19
20
21
22
23
import unittest

import numpy as np
import torch

from diffusers.models import ModelMixin, UNet3DConditionModel
24
from diffusers.models.attention_processor import AttnProcessor, LoRAAttnProcessor
Dhruv Nair's avatar
Dhruv Nair committed
25
from diffusers.utils import logging
26
from diffusers.utils.import_utils import is_xformers_available
Dhruv Nair's avatar
Dhruv Nair committed
27
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, skip_mps, torch_device
28

29
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
30
31


32
33
enable_full_determinism()

34
35
36
logger = logging.get_logger(__name__)


37
def create_lora_layers(model, mock_weights: bool = True):
38
39
    lora_attn_procs = {}
    for name in model.attn_processors.keys():
40
41
42
43
        has_cross_attention = name.endswith("attn2.processor") and not (
            name.startswith("transformer_in") or "temp_attentions" in name.split(".")
        )
        cross_attention_dim = model.config.cross_attention_dim if has_cross_attention else None
44
45
46
47
48
49
50
51
        if name.startswith("mid_block"):
            hidden_size = model.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(model.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = model.config.block_out_channels[block_id]
52
53
54
        elif name.startswith("transformer_in"):
            # Note that the `8 * ...` comes from: https://github.com/huggingface/diffusers/blob/7139f0e874f10b2463caa8cbd585762a309d12d6/src/diffusers/models/unet_3d_condition.py#L148
            hidden_size = 8 * model.config.attention_head_dim
55
56
57
58

        lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
        lora_attn_procs[name] = lora_attn_procs[name].to(model.device)

59
60
61
62
63
64
65
        if mock_weights:
            # add 1 to weights to mock trained weights
            with torch.no_grad():
                lora_attn_procs[name].to_q_lora.up.weight += 1
                lora_attn_procs[name].to_k_lora.up.weight += 1
                lora_attn_procs[name].to_v_lora.up.weight += 1
                lora_attn_procs[name].to_out_lora.up.weight += 1
66
67
68
69

    return lora_attn_procs


70
@skip_mps
71
class UNet3DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
72
    model_class = UNet3DConditionModel
73
    main_input_name = "sample"
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        num_frames = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)
        encoder_hidden_states = floats_tensor((batch_size, 4, 32)).to(torch_device)

        return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}

    @property
    def input_shape(self):
        return (4, 4, 32, 32)

    @property
    def output_shape(self):
        return (4, 4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
98
            "block_out_channels": (32, 64),
99
100
101
102
            "down_block_types": (
                "CrossAttnDownBlock3D",
                "DownBlock3D",
            ),
103
            "up_block_types": ("UpBlock3D", "CrossAttnUpBlock3D"),
104
            "cross_attention_dim": 32,
105
            "attention_head_dim": 8,
106
107
            "out_channels": 4,
            "in_channels": 4,
108
            "layers_per_block": 1,
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
            "sample_size": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_enable_works(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        model.enable_xformers_memory_efficient_attention()

        assert (
            model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
            == "XFormersAttnProcessor"
        ), "xformers is not enabled"

129
    # Overriding to set `norm_num_groups` needs to be different for this model.
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    def test_forward_with_norm_groups(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["norm_num_groups"] = 32

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    # Overriding since the UNet3D outputs a different structure.
    def test_determinism(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            # Warmup pass when using mps (see #372)
            if torch_device == "mps" and isinstance(model, ModelMixin):
                model(**self.dummy_input)

            first = model(**inputs_dict)
            if isinstance(first, dict):
                first = first.sample

            second = model(**inputs_dict)
            if isinstance(second, dict):
                second = second.sample

        out_1 = first.cpu().numpy()
        out_2 = second.cpu().numpy()
        out_1 = out_1[~np.isnan(out_1)]
        out_2 = out_2[~np.isnan(out_2)]
        max_diff = np.amax(np.abs(out_1 - out_2))
        self.assertLessEqual(max_diff, 1e-5)

    def test_model_attention_slicing(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = 8

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        model.set_attention_slice("auto")
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

        model.set_attention_slice("max")
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

        model.set_attention_slice(2)
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    def test_lora_processors(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = 8

        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            sample1 = model(**inputs_dict).sample

        lora_attn_procs = create_lora_layers(model)

        # make sure we can set a list of attention processors
        model.set_attn_processor(lora_attn_procs)
        model.to(torch_device)

        # test that attn processors can be set to itself
        model.set_attn_processor(model.attn_processors)

        with torch.no_grad():
            sample2 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample
            sample3 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample
            sample4 = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample

225
226
        assert (sample1 - sample2).abs().max() < 3e-3
        assert (sample3 - sample4).abs().max() < 3e-3
227
228

        # sample 2 and sample 3 should be different
229
        assert (sample2 - sample3).abs().max() > 3e-3
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

    def test_lora_save_load(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = 8

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            old_sample = model(**inputs_dict).sample

        lora_attn_procs = create_lora_layers(model)
        model.set_attn_processor(lora_attn_procs)

        with torch.no_grad():
            sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample

        with tempfile.TemporaryDirectory() as tmpdirname:
250
            model.save_attn_procs(tmpdirname, safe_serialization=False)
251
252
253
254
255
256
257
258
259
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            torch.manual_seed(0)
            new_model = self.model_class(**init_dict)
            new_model.to(torch_device)
            new_model.load_attn_procs(tmpdirname)

        with torch.no_grad():
            new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample

260
        assert (sample - new_sample).abs().max() < 1e-3
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

        # LoRA and no LoRA should NOT be the same
        assert (sample - old_sample).abs().max() > 1e-4

    def test_lora_save_load_safetensors(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = 8

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            old_sample = model(**inputs_dict).sample

        lora_attn_procs = create_lora_layers(model)
        model.set_attn_processor(lora_attn_procs)

        with torch.no_grad():
            sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_attn_procs(tmpdirname, safe_serialization=True)
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            torch.manual_seed(0)
            new_model = self.model_class(**init_dict)
            new_model.to(torch_device)
            new_model.load_attn_procs(tmpdirname)

        with torch.no_grad():
            new_sample = new_model(**inputs_dict, cross_attention_kwargs={"scale": 0.5}).sample

Patrick von Platen's avatar
Patrick von Platen committed
294
        assert (sample - new_sample).abs().max() < 3e-3
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

        # LoRA and no LoRA should NOT be the same
        assert (sample - old_sample).abs().max() > 1e-4

    def test_lora_save_safetensors_load_torch(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = 8

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        lora_attn_procs = create_lora_layers(model, mock_weights=False)
        model.set_attn_processor(lora_attn_procs)
        # Saving as torch, properly reloads with directly filename
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_attn_procs(tmpdirname)
314
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
315
316
317
            torch.manual_seed(0)
            new_model = self.model_class(**init_dict)
            new_model.to(torch_device)
318
            new_model.load_attn_procs(tmpdirname, weight_name="pytorch_lora_weights.safetensors")
319
320
321
322
323

    def test_lora_save_torch_force_load_safetensors_error(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = 8
324

325
326
327
        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)
328

329
330
331
332
        lora_attn_procs = create_lora_layers(model, mock_weights=False)
        model.set_attn_processor(lora_attn_procs)
        # Saving as torch, properly reloads with directly filename
        with tempfile.TemporaryDirectory() as tmpdirname:
333
            model.save_attn_procs(tmpdirname, safe_serialization=False)
334
335
336
337
338
339
340
341
342
343
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            torch.manual_seed(0)
            new_model = self.model_class(**init_dict)
            new_model.to(torch_device)
            with self.assertRaises(IOError) as e:
                new_model.load_attn_procs(tmpdirname, use_safetensors=True)
            self.assertIn("Error no file named pytorch_lora_weights.safetensors", str(e.exception))

    def test_lora_on_off(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
344

345
        init_dict["attention_head_dim"] = 8
346

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            old_sample = model(**inputs_dict).sample

        lora_attn_procs = create_lora_layers(model)
        model.set_attn_processor(lora_attn_procs)

        with torch.no_grad():
            sample = model(**inputs_dict, cross_attention_kwargs={"scale": 0.0}).sample

        model.set_attn_processor(AttnProcessor())

        with torch.no_grad():
            new_sample = model(**inputs_dict).sample
364

365
        assert (sample - new_sample).abs().max() < 1e-4
366
        assert (sample - old_sample).abs().max() < 3e-3
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_lora_xformers_on_off(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["attention_head_dim"] = 4

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)
        lora_attn_procs = create_lora_layers(model)
        model.set_attn_processor(lora_attn_procs)

        # default
        with torch.no_grad():
            sample = model(**inputs_dict).sample

            model.enable_xformers_memory_efficient_attention()
            on_sample = model(**inputs_dict).sample

            model.disable_xformers_memory_efficient_attention()
            off_sample = model(**inputs_dict).sample

        assert (sample - on_sample).abs().max() < 1e-4
        assert (sample - off_sample).abs().max() < 1e-4

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    def test_feed_forward_chunking(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        init_dict["norm_num_groups"] = 32

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)[0]

        model.enable_forward_chunking()
        with torch.no_grad():
            output_2 = model(**inputs_dict)[0]

        self.assertEqual(output.shape, output_2.shape, "Shape doesn't match")
        assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2

415
416

# (todo: sayakpaul) implement SLOW tests.