test_models_unet_2d.py 9.74 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
18
19
20
21
import math
import unittest

import torch

22
from diffusers import UNet2DModel
Dhruv Nair's avatar
Dhruv Nair committed
23
24
25
26
27
28
29
30
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    slow,
    torch_all_close,
    torch_device,
)
31

32
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
33
34


Patrick von Platen's avatar
Patrick von Platen committed
35
logger = logging.get_logger(__name__)
36
37

enable_full_determinism()
38
39


40
class Unet2DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
41
    model_class = UNet2DModel
42
    main_input_name = "sample"
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": (32, 64),
            "down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
            "up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
68
            "attention_head_dim": 3,
69
70
71
72
73
74
75
76
77
            "out_channels": 3,
            "in_channels": 3,
            "layers_per_block": 2,
            "sample_size": 32,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict


78
class UNetLDMModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
79
    model_class = UNet2DModel
80
    main_input_name = "sample"
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (4, 32, 32)

    @property
    def output_shape(self):
        return (4, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "sample_size": 32,
            "in_channels": 4,
            "out_channels": 4,
            "layers_per_block": 2,
            "block_out_channels": (32, 64),
            "attention_head_dim": 32,
            "down_block_types": ("DownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "UpBlock2D"),
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)

        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
122
        image = model(**self.dummy_input).sample
123
124
125

        assert image is not None, "Make sure output is not None"

Anton Lozhkov's avatar
Anton Lozhkov committed
126
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
127
    def test_from_pretrained_accelerate(self):
128
        model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
129
130
131
132
133
        model.to(torch_device)
        image = model(**self.dummy_input).sample

        assert image is not None, "Make sure output is not None"

Anton Lozhkov's avatar
Anton Lozhkov committed
134
    @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU")
135
    def test_from_pretrained_accelerate_wont_change_results(self):
136
        # by defautl model loading will use accelerate as `low_cpu_mem_usage=True`
137
        model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        model_accelerate.to(torch_device)
        model_accelerate.eval()

        noise = torch.randn(
            1,
            model_accelerate.config.in_channels,
            model_accelerate.config.sample_size,
            model_accelerate.config.sample_size,
            generator=torch.manual_seed(0),
        )
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)

        arr_accelerate = model_accelerate(noise, time_step)["sample"]

        # two models don't need to stay in the device at the same time
        del model_accelerate
        torch.cuda.empty_cache()
        gc.collect()

158
        model_normal_load, _ = UNet2DModel.from_pretrained(
159
            "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
160
        )
161
162
163
164
        model_normal_load.to(torch_device)
        model_normal_load.eval()
        arr_normal_load = model_normal_load(noise, time_step)["sample"]

165
        assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3)
166

167
168
169
    def test_output_pretrained(self):
        model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
        model.eval()
170
        model.to(torch_device)
171

172
173
174
175
176
177
178
        noise = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
179
180
        noise = noise.to(torch_device)
        time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
181
182

        with torch.no_grad():
183
            output = model(noise, time_step).sample
184

185
        output_slice = output[0, -1, -3:, -3:].flatten().cpu()
186
187
188
189
        # fmt: off
        expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
        # fmt: on

190
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
191
192


193
class NCSNppModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
194
    model_class = UNet2DModel
195
    main_input_name = "sample"
196
197
198
199
200
201
202

    @property
    def dummy_input(self, sizes=(32, 32)):
        batch_size = 4
        num_channels = 3

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
203
        time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

        return {"sample": noise, "timestep": time_step}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64, 64, 64],
            "in_channels": 3,
            "layers_per_block": 1,
            "out_channels": 3,
            "time_embedding_type": "fourier",
            "norm_eps": 1e-6,
            "mid_block_scale_factor": math.sqrt(2.0),
            "norm_num_groups": None,
            "down_block_types": [
                "SkipDownBlock2D",
                "AttnSkipDownBlock2D",
                "SkipDownBlock2D",
                "SkipDownBlock2D",
            ],
            "up_block_types": [
                "SkipUpBlock2D",
                "SkipUpBlock2D",
                "AttnSkipUpBlock2D",
                "SkipUpBlock2D",
            ],
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

241
    @slow
242
    def test_from_pretrained_hub(self):
243
        model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
244
245
246
247
248
249
250
251
252
253
254
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        inputs = self.dummy_input
        noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
        inputs["sample"] = noise
        image = model(**inputs)

        assert image is not None, "Make sure output is not None"

255
    @slow
256
    def test_output_pretrained_ve_mid(self):
257
        model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
258
259
260
261
262
263
264
265
266
267
        model.to(torch_device)

        batch_size = 4
        num_channels = 3
        sizes = (256, 256)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
268
            output = model(noise, time_step).sample
269
270
271

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
272
        expected_output_slice = torch.tensor([-4836.2178, -6487.1470, -3816.8196, -7964.9302, -10966.3037, -20043.5957, 8137.0513, 2340.3328, 544.6056])
273
274
        # fmt: on

275
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
276
277
278
279
280
281
282
283
284
285
286
287
288

    def test_output_pretrained_ve_large(self):
        model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
        model.to(torch_device)

        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)

        with torch.no_grad():
289
            output = model(noise, time_step).sample
290
291
292
293
294
295

        output_slice = output[0, -3:, -3:, -1].flatten().cpu()
        # fmt: off
        expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
        # fmt: on

296
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
297
298
299
300

    def test_forward_with_norm_groups(self):
        # not required for this model
        pass