test_models_prior.py 6.19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import inspect
import unittest

import torch
from parameterized import parameterized

from diffusers import PriorTransformer
Dhruv Nair's avatar
Dhruv Nair committed
24
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, slow, torch_all_close, torch_device
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

from .test_modeling_common import ModelTesterMixin


enable_full_determinism()


class PriorTransformerTests(ModelTesterMixin, unittest.TestCase):
    model_class = PriorTransformer
    main_input_name = "hidden_states"

    @property
    def dummy_input(self):
        batch_size = 4
        embedding_dim = 8
        num_embeddings = 7

        hidden_states = floats_tensor((batch_size, embedding_dim)).to(torch_device)

        proj_embedding = floats_tensor((batch_size, embedding_dim)).to(torch_device)
        encoder_hidden_states = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(torch_device)

        return {
            "hidden_states": hidden_states,
            "timestep": 2,
            "proj_embedding": proj_embedding,
            "encoder_hidden_states": encoder_hidden_states,
        }

    def get_dummy_seed_input(self, seed=0):
        torch.manual_seed(seed)
        batch_size = 4
        embedding_dim = 8
        num_embeddings = 7

        hidden_states = torch.randn((batch_size, embedding_dim)).to(torch_device)

        proj_embedding = torch.randn((batch_size, embedding_dim)).to(torch_device)
        encoder_hidden_states = torch.randn((batch_size, num_embeddings, embedding_dim)).to(torch_device)

        return {
            "hidden_states": hidden_states,
            "timestep": 2,
            "proj_embedding": proj_embedding,
            "encoder_hidden_states": encoder_hidden_states,
        }

    @property
    def input_shape(self):
        return (4, 8)

    @property
    def output_shape(self):
        return (4, 8)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "num_attention_heads": 2,
            "attention_head_dim": 4,
            "num_layers": 2,
            "embedding_dim": 8,
            "num_embeddings": 7,
            "additional_embeddings": 4,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_from_pretrained_hub(self):
        model, loading_info = PriorTransformer.from_pretrained(
            "hf-internal-testing/prior-dummy", output_loading_info=True
        )
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        hidden_states = model(**self.dummy_input)[0]

        assert hidden_states is not None, "Make sure output is not None"

    def test_forward_signature(self):
        init_dict, _ = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**init_dict)
        signature = inspect.signature(model.forward)
        # signature.parameters is an OrderedDict => so arg_names order is deterministic
        arg_names = [*signature.parameters.keys()]

        expected_arg_names = ["hidden_states", "timestep"]
        self.assertListEqual(arg_names[:2], expected_arg_names)

    def test_output_pretrained(self):
        model = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy")
        model = model.to(torch_device)

        if hasattr(model, "set_default_attn_processor"):
            model.set_default_attn_processor()

        input = self.get_dummy_seed_input()

        with torch.no_grad():
            output = model(**input)[0]

        output_slice = output[0, :5].flatten().cpu()
        print(output_slice)

        # Since the VAE Gaussian prior's generator is seeded on the appropriate device,
        # the expected output slices are not the same for CPU and GPU.
        expected_output_slice = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239])
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))


@slow
class PriorTransformerIntegrationTests(unittest.TestCase):
    def get_dummy_seed_input(self, batch_size=1, embedding_dim=768, num_embeddings=77, seed=0):
        torch.manual_seed(seed)
        batch_size = batch_size
        embedding_dim = embedding_dim
        num_embeddings = num_embeddings

        hidden_states = torch.randn((batch_size, embedding_dim)).to(torch_device)

        proj_embedding = torch.randn((batch_size, embedding_dim)).to(torch_device)
        encoder_hidden_states = torch.randn((batch_size, num_embeddings, embedding_dim)).to(torch_device)

        return {
            "hidden_states": hidden_states,
            "timestep": 2,
            "proj_embedding": proj_embedding,
            "encoder_hidden_states": encoder_hidden_states,
        }

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    @parameterized.expand(
        [
            # fmt: off
            [13, [-0.5861,  0.1283, -0.0931,  0.0882,  0.4476,  0.1329, -0.0498,  0.0640]],
            [37, [-0.4913,  0.0110, -0.0483,  0.0541,  0.4954, -0.0170,  0.0354,  0.1651]],
            # fmt: on
        ]
    )
    def test_kandinsky_prior(self, seed, expected_slice):
        model = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior")
        model.to(torch_device)
        input = self.get_dummy_seed_input(seed=seed)

        with torch.no_grad():
            sample = model(**input)[0]

        assert list(sample.shape) == [1, 768]

        output_slice = sample[0, :8].flatten().cpu()
        print(output_slice)
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)