"csrc/aio/py_lib/deepspeed_aio_thread.cpp" did not exist on "ab5534fc4c0f8ca21ada321f9730d723aa31288b"
test_stable_diffusion.py 33.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
import gc
18
import tempfile
19
import time
20
21
22
23
24
25
26
27
import unittest

import numpy as np
import torch

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
28
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
29
30
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
31
32
33
34
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
35
    logging,
36
)
37
from diffusers.utils import load_numpy, nightly, slow, torch_device
38
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu
39
40
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

41
42
from ...test_pipelines_common import PipelineTesterMixin

43
44
45
46

torch.backends.cuda.matmul.allow_tf32 = False


47
class StableDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
48
    pipeline_class = StableDiffusionPipeline
49

50
    def get_dummy_components(self):
51
        torch.manual_seed(0)
52
        unet = UNet2DConditionModel(
53
54
55
56
57
58
59
60
61
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
62
63
64
65
66
67
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
68
69
        )
        torch.manual_seed(0)
70
        vae = AutoencoderKL(
71
72
73
74
75
76
77
78
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
79
        text_encoder_config = CLIPTextConfig(
80
81
82
83
84
85
86
87
88
89
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
90
91
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
117
118
119
120

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

121
122
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
123
        sd_pipe = sd_pipe.to(torch_device)
124
125
        sd_pipe.set_progress_bar_config(disable=None)

126
127
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
128
129
130
131
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

132
        assert image.shape == (1, 64, 64, 3)
133
        expected_slice = np.array([0.5643, 0.6017, 0.4799, 0.5267, 0.5584, 0.4641, 0.5159, 0.4963, 0.4791])
134
135
136

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    def test_stable_diffusion_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    def test_stable_diffusion_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = sd_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=sd_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            embeds.append(sd_pipe.text_encoder(text_inputs)[0])

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

213
214
215
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

216
217
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
218
219
220
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

221
222
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, height=136, width=136)
223
224
225
226
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

227
228
        assert image.shape == (1, 136, 136, 3)
        expected_slice = np.array([0.5524, 0.5626, 0.6069, 0.4727, 0.386, 0.3995, 0.4613, 0.4328, 0.4269])
229
230
231
232
233

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
234
235
236
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
237
238
239
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

240
241
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
242
243
244
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

245
        assert image.shape == (1, 64, 64, 3)
246
        expected_slice = np.array([0.5094, 0.5674, 0.4667, 0.5125, 0.5696, 0.4674, 0.5277, 0.4964, 0.4945])
247
248
249
250
251
252
253
254
255
256
257
258
259
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

260
261
262
263
264
265
266
267
268
269
        # check that there's no error when saving a pipeline with one of the models being None
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)

        # sanity check that the pipeline still works
        assert pipe.safety_checker is None
        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

270
271
    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
hlky's avatar
hlky committed
272

273
274
275
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
276
277
278
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

279
280
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
281
282
283
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

284
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
285
286
287
288
289
290
291
292
293
294
295
296
297
        expected_slice = np.array(
            [
                0.47082293033599854,
                0.5371589064598083,
                0.4562119245529175,
                0.5220914483070374,
                0.5733777284622192,
                0.4795039892196655,
                0.5465868711471558,
                0.5074326395988464,
                0.5042197108268738,
            ]
        )
hlky's avatar
hlky committed
298
299
300
301
302
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

303
304
305
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
306
307
308
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

309
310
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
311
312
313
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

314
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
315
316
317
318
319
320
321
322
323
324
325
326
327
        expected_slice = np.array(
            [
                0.4707113206386566,
                0.5372191071510315,
                0.4563021957874298,
                0.5220003724098206,
                0.5734264850616455,
                0.4794946610927582,
                0.5463782548904419,
                0.5074145197868347,
                0.504422664642334,
            ]
        )
hlky's avatar
hlky committed
328
329
330
331
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
332

333
334
335
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
336
337
338
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

339
340
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
341
342
343
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

344
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
345
346
347
348
349
350
351
352
353
354
355
356
357
        expected_slice = np.array(
            [
                0.47082313895225525,
                0.5371587872505188,
                0.4562119245529175,
                0.5220913887023926,
                0.5733776688575745,
                0.47950395941734314,
                0.546586811542511,
                0.5074326992034912,
                0.5042197108268738,
            ]
        )
358
359
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

360
361
    def test_stable_diffusion_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
362
363
364
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
365
366
367
368
369
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        image_count = 4

370
371
372
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_1 = sd_pipe(**inputs)
373
374
375

        # make sure sliced vae decode yields the same result
        sd_pipe.enable_vae_slicing()
376
377
378
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_2 = sd_pipe(**inputs)
379
380
381
382

        # there is a small discrepancy at image borders vs. full batch decode
        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3

383
384
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
385
386
387
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
388
389
390
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

391
        inputs = self.get_dummy_inputs(device)
392
        negative_prompt = "french fries"
393
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
394
395
396
397

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

398
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
399
400
401
402
403
404
405
406
407
408
409
410
411
        expected_slice = np.array(
            [
                0.5108221173286438,
                0.5688379406929016,
                0.4685141146183014,
                0.5098261833190918,
                0.5657756328582764,
                0.4631010890007019,
                0.5226285457611084,
                0.49129390716552734,
                0.4899061322212219,
            ]
        )
412
413
414
415
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_num_images_per_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
416
417
418
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
419
420
421
422
423
424
425
426
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # test num_images_per_prompt=1 (default)
        images = sd_pipe(prompt, num_inference_steps=2, output_type="np").images

427
        assert images.shape == (1, 64, 64, 3)
428
429
430
431
432

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        images = sd_pipe([prompt] * batch_size, num_inference_steps=2, output_type="np").images

433
        assert images.shape == (batch_size, 64, 64, 3)
434
435
436
437
438
439
440

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
        images = sd_pipe(
            prompt, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
        ).images

441
        assert images.shape == (num_images_per_prompt, 64, 64, 3)
442
443
444
445
446
447
448

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
        images = sd_pipe(
            [prompt] * batch_size, num_inference_steps=2, output_type="np", num_images_per_prompt=num_images_per_prompt
        ).images

449
        assert images.shape == (batch_size * num_images_per_prompt, 64, 64, 3)
450

451
    def test_stable_diffusion_long_prompt(self):
452
453
454
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            text_embeddings_3 = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
            text_embeddings = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
            text_embeddings_2 = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77

        assert cap_logger.out == cap_logger_2.out
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25
        assert cap_logger_3.out == ""

489
    def test_stable_diffusion_height_width_opt(self):
490
491
492
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
493
494
495
496
497
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"

498
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
499
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
500
        assert image_shape == (64, 64)
501

502
        output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
503
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
504
        assert image_shape == (96, 96)
505
506
507

        config = dict(sd_pipe.unet.config)
        config["sample_size"] = 96
Patrick von Platen's avatar
Patrick von Platen committed
508
        sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
509
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
510
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
511
        assert image_shape == (192, 192)
512

513
514

@slow
515
@require_torch_gpu
516
class StableDiffusionPipelineSlowTests(unittest.TestCase):
517
518
519
520
521
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    def get_inputs(self, device, dtype=torch.float32, seed=0):
        generator = torch.Generator(device=device).manual_seed(seed)
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_1_1_pndm(self):
537
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
538
539
540
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

541
542
543
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
544

545
546
547
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.43625, 0.43554, 0.36670, 0.40660, 0.39703, 0.38658, 0.43936, 0.43557, 0.40592])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
548

549
550
551
552
    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
553

554
555
556
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
557

558
559
560
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.57400, 0.47841, 0.31625, 0.63583, 0.58306, 0.55056, 0.50825, 0.56306, 0.55748])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
561

562
563
564
    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
565
566
567
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

568
569
570
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
571

572
573
574
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
575

576
577
578
579
580
581
582
583
584
    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
585
586

        assert image.shape == (1, 512, 512, 3)
587
588
        expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
589

590
591
592
593
594
    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
595

596
597
598
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
599
600

        assert image.shape == (1, 512, 512, 3)
601
602
        expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
603

604
    def test_stable_diffusion_attention_slicing(self):
605
        torch.cuda.reset_peak_memory_stats()
606
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
607
        pipe = pipe.to(torch_device)
608
609
        pipe.set_progress_bar_config(disable=None)

610
        # enable attention slicing
611
        pipe.enable_attention_slicing()
612
613
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
614
615
616
617
618
619

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

620
        # disable slicing
621
        pipe.disable_attention_slicing()
622
623
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
624
625
626
627

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
628
        assert np.abs(image_sliced - image).max() < 1e-3
629

630
631
    def test_stable_diffusion_vae_slicing(self):
        torch.cuda.reset_peak_memory_stats()
632
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
633
        pipe = pipe.to(torch_device)
634
635
636
637
638
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # enable vae slicing
        pipe.enable_vae_slicing()
639
640
641
642
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image_sliced = pipe(**inputs).images
643
644
645
646
647
648
649
650

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 4 GB is allocated
        assert mem_bytes < 4e9

        # disable vae slicing
        pipe.disable_vae_slicing()
651
652
653
654
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image = pipe(**inputs).images
655
656
657
658
659

        # make sure that more than 4 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 4e9
        # There is a small discrepancy at the image borders vs. a fully batched version.
660
        assert np.abs(image_sliced - image).max() < 4e-3
661

662
    def test_stable_diffusion_fp16_vs_autocast(self):
663
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
664
        pipe = pipe.to(torch_device)
665
666
        pipe.set_progress_bar_config(disable=None)

667
668
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_fp16 = pipe(**inputs).images
669
670

        with torch.autocast(torch_device):
671
672
            inputs = self.get_inputs(torch_device)
            image_autocast = pipe(**inputs).images
673
674

        # Make sure results are close enough
675
        diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
676
677
678
679
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

680
    def test_stable_diffusion_intermediate_state(self):
681
682
        number_of_steps = 0

683
684
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
685
686
            nonlocal number_of_steps
            number_of_steps += 1
687
            if step == 1:
688
689
690
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
691
                expected_slice = np.array([-0.5713, -0.3018, -0.9814, 0.04663, -0.879, 0.76, -1.734, 0.1044, 1.161])
692
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
693
            elif step == 2:
694
695
696
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
697
                expected_slice = np.array([-0.1885, -0.3022, -1.012, -0.514, -0.477, 0.6143, -0.9336, 0.6553, 1.453])
698
699
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2

700
        callback_fn.has_been_called = False
701

702
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
703
704
705
706
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

707
708
709
710
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
711

712
    def test_stable_diffusion_low_cpu_mem_usage(self):
713
714
715
        pipeline_id = "CompVis/stable-diffusion-v1-4"

        start_time = time.time()
716
        pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
717
718
        pipeline_low_cpu_mem_usage.to(torch_device)
        low_cpu_mem_usage_time = time.time() - start_time
719
720

        start_time = time.time()
721
        _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
722
        normal_load_time = time.time() - start_time
723

724
        assert 2 * low_cpu_mem_usage_time < normal_load_time
725

726
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
727
728
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
729
        torch.cuda.reset_peak_memory_stats()
730

731
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
732
733
734
735
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
736

737
738
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
739
740

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
741
742
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854


@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, dtype=torch.float32, seed=0):
        generator = torch.Generator(device=device).manual_seed(seed)
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_1_5_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3