sdxl.md 21.3 KB
Newer Older
Aryan's avatar
Aryan committed
1
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2
3
4
5
6
7
8
9
10
11
12

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Steven Liu's avatar
Steven Liu committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Stable Diffusion XL

[[open-in-colab]]

[Stable Diffusion XL](https://huggingface.co/papers/2307.01952) (SDXL) is a powerful text-to-image generation model that iterates on the previous Stable Diffusion models in three key ways:

1. the UNet is 3x larger and SDXL combines a second text encoder (OpenCLIP ViT-bigG/14) with the original text encoder to significantly increase the number of parameters
2. introduces size and crop-conditioning to preserve training data from being discarded and gain more control over how a generated image should be cropped
3. introduces a two-stage model process; the *base* model (can also be run as a standalone model) generates an image as an input to the *refiner* model which adds additional high-quality details

This guide will show you how to use SDXL for text-to-image, image-to-image, and inpainting.

Before you begin, make sure you have the following libraries installed:

```py
# uncomment to install the necessary libraries in Colab
29
#!pip install -q diffusers transformers accelerate invisible-watermark>=0.2.0
Steven Liu's avatar
Steven Liu committed
30
31
```

Steven Liu's avatar
Steven Liu committed
32
33
34
35
36
37
> [!WARNING]
> We recommend installing the [invisible-watermark](https://pypi.org/project/invisible-watermark/) library to help identify images that are generated. If the invisible-watermark library is installed, it is used by default. To disable the watermarker:
>
> ```py
> pipeline = StableDiffusionXLPipeline.from_pretrained(..., add_watermarker=False)
> ```
Steven Liu's avatar
Steven Liu committed
38
39
40
41
42
43
44
45
46
47
48
49
50

## Load model checkpoints

Model weights may be stored in separate subfolders on the Hub or locally, in which case, you should use the [`~StableDiffusionXLPipeline.from_pretrained`] method:

```py
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
import torch

pipeline = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")

51
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
Steven Liu's avatar
Steven Liu committed
52
53
54
55
56
57
58
59
60
61
62
    "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
).to("cuda")
```

You can also use the [`~StableDiffusionXLPipeline.from_single_file`] method to load a model checkpoint stored in a single file format (`.ckpt` or `.safetensors`) from the Hub or locally:

```py
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
import torch

pipeline = StableDiffusionXLPipeline.from_single_file(
63
    "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors",
64
    torch_dtype=torch.float16
Steven Liu's avatar
Steven Liu committed
65
66
67
).to("cuda")

refiner = StableDiffusionXLImg2ImgPipeline.from_single_file(
68
    "https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/sd_xl_refiner_1.0.safetensors", torch_dtype=torch.float16
Steven Liu's avatar
Steven Liu committed
69
70
71
72
73
).to("cuda")
```

## Text-to-image

74
For text-to-image, pass a text prompt. By default, SDXL generates a 1024x1024 image for the best results. You can try setting the `height` and `width` parameters to 768x768 or 512x512, but anything below 512x512 is not likely to work.
Steven Liu's avatar
Steven Liu committed
75
76
77
78
79
80
81
82
83
84

```py
from diffusers import AutoPipelineForText2Image
import torch

pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
85
86
image = pipeline_text2image(prompt=prompt).images[0]
image
Steven Liu's avatar
Steven Liu committed
87
88
89
90
91
92
93
94
95
96
97
```

<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png" alt="generated image of an astronaut in a jungle"/>
</div>

## Image-to-image

For image-to-image, SDXL works especially well with image sizes between 768x768 and 1024x1024. Pass an initial image, and a text prompt to condition the image with:

```py
98
99
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image, make_image_grid
Steven Liu's avatar
Steven Liu committed
100
101
102
103

# use from_pipe to avoid consuming additional memory when loading a checkpoint
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")

104
105
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
init_image = load_image(url)
Steven Liu's avatar
Steven Liu committed
106
107
prompt = "a dog catching a frisbee in the jungle"
image = pipeline(prompt, image=init_image, strength=0.8, guidance_scale=10.5).images[0]
108
make_image_grid([init_image, image], rows=1, cols=2)
Steven Liu's avatar
Steven Liu committed
109
110
111
112
113
114
115
116
117
118
119
120
```

<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-img2img.png" alt="generated image of a dog catching a frisbee in a jungle"/>
</div>

## Inpainting

For inpainting, you'll need the original image and a mask of what you want to replace in the original image. Create a prompt to describe what you want to replace the masked area with.

```py
from diffusers import AutoPipelineForInpainting
121
from diffusers.utils import load_image, make_image_grid
Steven Liu's avatar
Steven Liu committed
122
123
124
125
126
127
128

# use from_pipe to avoid consuming additional memory when loading a checkpoint
pipeline = AutoPipelineForInpainting.from_pipe(pipeline_text2image).to("cuda")

img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-text2img.png"
mask_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-inpaint-mask.png"

129
130
init_image = load_image(img_url)
mask_image = load_image(mask_url)
Steven Liu's avatar
Steven Liu committed
131
132
133

prompt = "A deep sea diver floating"
image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, strength=0.85, guidance_scale=12.5).images[0]
134
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
Steven Liu's avatar
Steven Liu committed
135
136
137
138
139
140
141
142
143
144
```

<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-inpaint.png" alt="generated image of a deep sea diver in a jungle"/>
</div>

## Refine image quality

SDXL includes a [refiner model](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0) specialized in denoising low-noise stage images to generate higher-quality images from the base model. There are two ways to use the refiner:

145
146
1. use the base and refiner models together to produce a refined image
2. use the base model to produce an image, and subsequently use the refiner model to add more details to the image (this is how SDXL was originally trained)
Steven Liu's avatar
Steven Liu committed
147
148
149

### Base + refiner model

150
When you use the base and refiner model together to generate an image, this is known as an [*ensemble of expert denoisers*](https://research.nvidia.com/labs/dir/eDiff-I/). The ensemble of expert denoisers approach requires fewer overall denoising steps versus passing the base model's output to the refiner model, so it should be significantly faster to run. However, you won't be able to inspect the base model's output because it still contains a large amount of noise.
Steven Liu's avatar
Steven Liu committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

As an ensemble of expert denoisers, the base model serves as the expert during the high-noise diffusion stage and the refiner model serves as the expert during the low-noise diffusion stage. Load the base and refiner model:

```py
from diffusers import DiffusionPipeline
import torch

base = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")

refiner = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-1.0",
    text_encoder_2=base.text_encoder_2,
    vae=base.vae,
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16",
).to("cuda")
```

To use this approach, you need to define the number of timesteps for each model to run through their respective stages. For the base model, this is controlled by the [`denoising_end`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLPipeline.__call__.denoising_end) parameter and for the refiner model, it is controlled by the [`denoising_start`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLImg2ImgPipeline.__call__.denoising_start) parameter.

Steven Liu's avatar
Steven Liu committed
174
175
> [!TIP]
> The `denoising_end` and `denoising_start` parameters should be a float between 0 and 1. These parameters are represented as a proportion of discrete timesteps as defined by the scheduler. If you're also using the `strength` parameter, it'll be ignored because the number of denoising steps is determined by the discrete timesteps the model is trained on and the declared fractional cutoff.
Steven Liu's avatar
Steven Liu committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

Let's set `denoising_end=0.8` so the base model performs the first 80% of denoising the **high-noise** timesteps and set `denoising_start=0.8` so the refiner model performs the last 20% of denoising the **low-noise** timesteps. The base model output should be in **latent** space instead of a PIL image.

```py
prompt = "A majestic lion jumping from a big stone at night"

image = base(
    prompt=prompt,
    num_inference_steps=40,
    denoising_end=0.8,
    output_type="latent",
).images
image = refiner(
    prompt=prompt,
    num_inference_steps=40,
    denoising_start=0.8,
    image=image,
).images[0]
194
image
Steven Liu's avatar
Steven Liu committed
195
196
197
198
199
```

<div class="flex gap-4">
  <div>
    <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lion_base.png" alt="generated image of a lion on a rock at night" />
200
    <figcaption class="mt-2 text-center text-sm text-gray-500">default base model</figcaption>
Steven Liu's avatar
Steven Liu committed
201
202
203
204
205
206
207
208
209
210
211
  </div>
  <div>
    <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/lion_refined.png" alt="generated image of a lion on a rock at night in higher quality" />
    <figcaption class="mt-2 text-center text-sm text-gray-500">ensemble of expert denoisers</figcaption>
  </div>
</div>

The refiner model can also be used for inpainting in the [`StableDiffusionXLInpaintPipeline`]:

```py
from diffusers import StableDiffusionXLInpaintPipeline
212
213
from diffusers.utils import load_image, make_image_grid
import torch
Steven Liu's avatar
Steven Liu committed
214
215
216
217
218
219
220

base = StableDiffusionXLInpaintPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")

refiner = StableDiffusionXLInpaintPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-1.0",
221
222
    text_encoder_2=base.text_encoder_2,
    vae=base.vae,
Steven Liu's avatar
Steven Liu committed
223
224
225
226
227
228
229
230
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16",
).to("cuda")

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

231
232
init_image = load_image(img_url)
mask_image = load_image(mask_url)
Steven Liu's avatar
Steven Liu committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

prompt = "A majestic tiger sitting on a bench"
num_inference_steps = 75
high_noise_frac = 0.7

image = base(
    prompt=prompt,
    image=init_image,
    mask_image=mask_image,
    num_inference_steps=num_inference_steps,
    denoising_end=high_noise_frac,
    output_type="latent",
).images
image = refiner(
    prompt=prompt,
    image=image,
    mask_image=mask_image,
    num_inference_steps=num_inference_steps,
    denoising_start=high_noise_frac,
).images[0]
253
make_image_grid([init_image, mask_image, image.resize((512, 512))], rows=1, cols=3)
Steven Liu's avatar
Steven Liu committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
```

This ensemble of expert denoisers method works well for all available schedulers!

### Base to refiner model

SDXL gets a boost in image quality by using the refiner model to add additional high-quality details to the fully-denoised image from the base model, in an image-to-image setting.

Load the base and refiner models:

```py
from diffusers import DiffusionPipeline
import torch

base = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")

refiner = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-1.0",
274
275
    text_encoder_2=base.text_encoder_2,
    vae=base.vae,
Steven Liu's avatar
Steven Liu committed
276
277
278
279
280
281
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16",
).to("cuda")
```

Steven Liu's avatar
Steven Liu committed
282
> [!WARNING]
Steven Liu's avatar
Steven Liu committed
283
> You can use SDXL refiner with a different base model. For example, you can use the [Hunyuan-DiT](../api/pipelines/hunyuandit) or [PixArt-Sigma](../api/pipelines/pixart_sigma) pipelines to generate images with better prompt adherence. Once you have generated an image, you can pass it to the SDXL refiner model to enhance final generation quality.
284

Steven Liu's avatar
Steven Liu committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
Generate an image from the base model, and set the model output to **latent** space:

```py
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"

image = base(prompt=prompt, output_type="latent").images[0]
```

Pass the generated image to the refiner model:

```py
image = refiner(prompt=prompt, image=image[None, :]).images[0]
```

<div class="flex gap-4">
  <div>
    <img class="rounded-xl" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/sd_xl/init_image.png" alt="generated image of an astronaut riding a green horse on Mars" />
    <figcaption class="mt-2 text-center text-sm text-gray-500">base model</figcaption>
  </div>
  <div>
    <img class="rounded-xl" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/sd_xl/refined_image.png" alt="higher quality generated image of an astronaut riding a green horse on Mars" />
    <figcaption class="mt-2 text-center text-sm text-gray-500">base model + refiner model</figcaption>
  </div>
</div>

310
For inpainting, load the base and the refiner model in the [`StableDiffusionXLInpaintPipeline`], remove the `denoising_end` and `denoising_start` parameters, and choose a smaller number of inference steps for the refiner.
Steven Liu's avatar
Steven Liu committed
311
312
313
314
315

## Micro-conditioning

SDXL training involves several additional conditioning techniques, which are referred to as *micro-conditioning*. These include original image size, target image size, and cropping parameters. The micro-conditionings can be used at inference time to create high-quality, centered images.

Steven Liu's avatar
Steven Liu committed
316
317
> [!TIP]
> You can use both micro-conditioning and negative micro-conditioning parameters thanks to classifier-free guidance. They are available in the [`StableDiffusionXLPipeline`], [`StableDiffusionXLImg2ImgPipeline`], [`StableDiffusionXLInpaintPipeline`], and [`StableDiffusionXLControlNetPipeline`].
Steven Liu's avatar
Steven Liu committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

### Size conditioning

There are two types of size conditioning:

- [`original_size`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLPipeline.__call__.original_size) conditioning comes from upscaled images in the training batch (because it would be wasteful to discard the smaller images which make up almost 40% of the total training data). This way, SDXL learns that upscaling artifacts are not supposed to be present in high-resolution images. During inference, you can use `original_size` to indicate the original image resolution. Using the default value of `(1024, 1024)` produces higher-quality images that resemble the 1024x1024 images in the dataset. If you choose to use a lower resolution, such as `(256, 256)`, the model still generates 1024x1024 images, but they'll look like the low resolution images (simpler patterns, blurring) in the dataset.

- [`target_size`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLPipeline.__call__.target_size) conditioning comes from finetuning SDXL to support different image aspect ratios. During inference, if you use the default value of `(1024, 1024)`, you'll get an image that resembles the composition of square images in the dataset. We recommend using the same value for `target_size` and `original_size`, but feel free to experiment with other options!

🤗 Diffusers also lets you specify negative conditions about an image's size to steer generation away from certain image resolutions:

```py
from diffusers import StableDiffusionXLPipeline
import torch

pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(
    prompt=prompt,
    negative_original_size=(512, 512),
    negative_target_size=(1024, 1024),
).images[0]
```

<div class="flex flex-col justify-center">
  <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/sd_xl/negative_conditions.png"/>
347
  <figcaption class="text-center">Images negatively conditioned on image resolutions of (128, 128), (256, 256), and (512, 512).</figcaption>
Steven Liu's avatar
Steven Liu committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
</div>

### Crop conditioning

Images generated by previous Stable Diffusion models may sometimes appear to be cropped. This is because images are actually cropped during training so that all the images in a batch have the same size. By conditioning on crop coordinates, SDXL *learns* that no cropping - coordinates `(0, 0)` - usually correlates with centered subjects and complete faces (this is the default value in 🤗 Diffusers). You can experiment with different coordinates if you want to generate off-centered compositions!

```py
from diffusers import StableDiffusionXLPipeline
import torch

pipeline = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
363
364
image = pipeline(prompt=prompt, crops_coords_top_left=(256, 0)).images[0]
image
Steven Liu's avatar
Steven Liu committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
```

<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-cropped.png" alt="generated image of an astronaut in a jungle, slightly cropped"/>
</div>

You can also specify negative cropping coordinates to steer generation away from certain cropping parameters:

```py
from diffusers import StableDiffusionXLPipeline
import torch

pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(
    prompt=prompt,
    negative_original_size=(512, 512),
    negative_crops_coords_top_left=(0, 0),
    negative_target_size=(1024, 1024),
).images[0]
388
image
Steven Liu's avatar
Steven Liu committed
389
390
391
392
```

## Use a different prompt for each text-encoder

393
SDXL uses two text-encoders, so it is possible to pass a different prompt to each text-encoder, which can [improve quality](https://github.com/huggingface/diffusers/issues/4004#issuecomment-1627764201). Pass your original prompt to `prompt` and the second prompt to `prompt_2` (use `negative_prompt` and `negative_prompt_2` if you're using negative prompts):
Steven Liu's avatar
Steven Liu committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407

```py
from diffusers import StableDiffusionXLPipeline
import torch

pipeline = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
).to("cuda")

# prompt is passed to OAI CLIP-ViT/L-14
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
# prompt_2 is passed to OpenCLIP-ViT/bigG-14
prompt_2 = "Van Gogh painting"
image = pipeline(prompt=prompt, prompt_2=prompt_2).images[0]
408
image
Steven Liu's avatar
Steven Liu committed
409
410
411
412
413
414
```

<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl-double-prompt.png" alt="generated image of an astronaut in a jungle in the style of a van gogh painting"/>
</div>

415
The dual text-encoders also support textual inversion embeddings that need to be loaded separately as explained in the [SDXL textual inversion](textual_inversion_inference#stable-diffusion-xl) section.
416

Steven Liu's avatar
Steven Liu committed
417
418
419
420
421
422
423
424
425
## Optimizations

SDXL is a large model, and you may need to optimize memory to get it to run on your hardware. Here are some tips to save memory and speed up inference.

1. Offload the model to the CPU with [`~StableDiffusionXLPipeline.enable_model_cpu_offload`] for out-of-memory errors:

```diff
- base.to("cuda")
- refiner.to("cuda")
426
427
+ base.enable_model_cpu_offload()
+ refiner.enable_model_cpu_offload()
Steven Liu's avatar
Steven Liu committed
428
429
```

430
2. Use `torch.compile` for ~20% speed-up (you need `torch>=2.0`):
Steven Liu's avatar
Steven Liu committed
431
432
433
434
435
436

```diff
+ base.unet = torch.compile(base.unet, mode="reduce-overhead", fullgraph=True)
+ refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
```

437
3. Enable [xFormers](../optimization/xformers) to run SDXL if `torch<2.0`:
Steven Liu's avatar
Steven Liu committed
438
439
440
441
442
443
444
445

```diff
+ base.enable_xformers_memory_efficient_attention()
+ refiner.enable_xformers_memory_efficient_attention()
```

## Other resources

446
If you're interested in experimenting with a minimal version of the [`UNet2DConditionModel`] used in SDXL, take a look at the [minSDXL](https://github.com/cloneofsimo/minSDXL) implementation which is written in PyTorch and directly compatible with 🤗 Diffusers.