smoothed_energy_guidance.py 13 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union

import torch

from ..configuration_utils import register_to_config
from ..hooks import HookRegistry
from ..hooks.smoothed_energy_guidance_utils import SmoothedEnergyGuidanceConfig, _apply_smoothed_energy_guidance_hook
23
from .guider_utils import BaseGuidance, GuiderOutput, rescale_noise_cfg
YiYi Xu's avatar
YiYi Xu committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94


if TYPE_CHECKING:
    from ..modular_pipelines.modular_pipeline import BlockState


class SmoothedEnergyGuidance(BaseGuidance):
    """
    Smoothed Energy Guidance (SEG): https://huggingface.co/papers/2408.00760

    SEG is only supported as an experimental prototype feature for now, so the implementation may be modified in the
    future without warning or guarantee of reproducibility. This implementation assumes:
    - Generated images are square (height == width)
    - The model does not combine different modalities together (e.g., text and image latent streams are not combined
      together such as Flux)

    Args:
        guidance_scale (`float`, defaults to `7.5`):
            The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
            prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
            deterioration of image quality.
        seg_guidance_scale (`float`, defaults to `3.0`):
            The scale parameter for smoothed energy guidance. Anatomy and structure coherence may improve with higher
            values, but it may also lead to overexposure and saturation.
        seg_blur_sigma (`float`, defaults to `9999999.0`):
            The amount by which we blur the attention weights. Setting this value greater than 9999.0 results in
            infinite blur, which means uniform queries. Controlling it exponentially is empirically effective.
        seg_blur_threshold_inf (`float`, defaults to `9999.0`):
            The threshold above which the blur is considered infinite.
        seg_guidance_start (`float`, defaults to `0.0`):
            The fraction of the total number of denoising steps after which smoothed energy guidance starts.
        seg_guidance_stop (`float`, defaults to `1.0`):
            The fraction of the total number of denoising steps after which smoothed energy guidance stops.
        seg_guidance_layers (`int` or `List[int]`, *optional*):
            The layer indices to apply smoothed energy guidance to. Can be a single integer or a list of integers. If
            not provided, `seg_guidance_config` must be provided. The recommended values are `[7, 8, 9]` for Stable
            Diffusion 3.5 Medium.
        seg_guidance_config (`SmoothedEnergyGuidanceConfig` or `List[SmoothedEnergyGuidanceConfig]`, *optional*):
            The configuration for the smoothed energy layer guidance. Can be a single `SmoothedEnergyGuidanceConfig` or
            a list of `SmoothedEnergyGuidanceConfig`. If not provided, `seg_guidance_layers` must be provided.
        guidance_rescale (`float`, defaults to `0.0`):
            The rescale factor applied to the noise predictions. This is used to improve image quality and fix
            overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
            Flawed](https://huggingface.co/papers/2305.08891).
        use_original_formulation (`bool`, defaults to `False`):
            Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
            we use the diffusers-native implementation that has been in the codebase for a long time. See
            [~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
        start (`float`, defaults to `0.01`):
            The fraction of the total number of denoising steps after which guidance starts.
        stop (`float`, defaults to `0.2`):
            The fraction of the total number of denoising steps after which guidance stops.
    """

    _input_predictions = ["pred_cond", "pred_uncond", "pred_cond_seg"]

    @register_to_config
    def __init__(
        self,
        guidance_scale: float = 7.5,
        seg_guidance_scale: float = 2.8,
        seg_blur_sigma: float = 9999999.0,
        seg_blur_threshold_inf: float = 9999.0,
        seg_guidance_start: float = 0.0,
        seg_guidance_stop: float = 1.0,
        seg_guidance_layers: Optional[Union[int, List[int]]] = None,
        seg_guidance_config: Union[SmoothedEnergyGuidanceConfig, List[SmoothedEnergyGuidanceConfig]] = None,
        guidance_rescale: float = 0.0,
        use_original_formulation: bool = False,
        start: float = 0.0,
        stop: float = 1.0,
YiYi Xu's avatar
YiYi Xu committed
95
        enabled: bool = True,
YiYi Xu's avatar
YiYi Xu committed
96
    ):
YiYi Xu's avatar
YiYi Xu committed
97
        super().__init__(start, stop, enabled)
YiYi Xu's avatar
YiYi Xu committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

        self.guidance_scale = guidance_scale
        self.seg_guidance_scale = seg_guidance_scale
        self.seg_blur_sigma = seg_blur_sigma
        self.seg_blur_threshold_inf = seg_blur_threshold_inf
        self.seg_guidance_start = seg_guidance_start
        self.seg_guidance_stop = seg_guidance_stop
        self.guidance_rescale = guidance_rescale
        self.use_original_formulation = use_original_formulation

        if not (0.0 <= seg_guidance_start < 1.0):
            raise ValueError(f"Expected `seg_guidance_start` to be between 0.0 and 1.0, but got {seg_guidance_start}.")
        if not (seg_guidance_start <= seg_guidance_stop <= 1.0):
            raise ValueError(f"Expected `seg_guidance_stop` to be between 0.0 and 1.0, but got {seg_guidance_stop}.")

        if seg_guidance_layers is None and seg_guidance_config is None:
            raise ValueError(
                "Either `seg_guidance_layers` or `seg_guidance_config` must be provided to enable Smoothed Energy Guidance."
            )
        if seg_guidance_layers is not None and seg_guidance_config is not None:
            raise ValueError("Only one of `seg_guidance_layers` or `seg_guidance_config` can be provided.")

        if seg_guidance_layers is not None:
            if isinstance(seg_guidance_layers, int):
                seg_guidance_layers = [seg_guidance_layers]
            if not isinstance(seg_guidance_layers, list):
                raise ValueError(
                    f"Expected `seg_guidance_layers` to be an int or a list of ints, but got {type(seg_guidance_layers)}."
                )
            seg_guidance_config = [SmoothedEnergyGuidanceConfig(layer, fqn="auto") for layer in seg_guidance_layers]

        if isinstance(seg_guidance_config, dict):
            seg_guidance_config = SmoothedEnergyGuidanceConfig.from_dict(seg_guidance_config)

        if isinstance(seg_guidance_config, SmoothedEnergyGuidanceConfig):
            seg_guidance_config = [seg_guidance_config]

        if not isinstance(seg_guidance_config, list):
            raise ValueError(
                f"Expected `seg_guidance_config` to be a SmoothedEnergyGuidanceConfig or a list of SmoothedEnergyGuidanceConfig, but got {type(seg_guidance_config)}."
            )
        elif isinstance(next(iter(seg_guidance_config), None), dict):
            seg_guidance_config = [SmoothedEnergyGuidanceConfig.from_dict(config) for config in seg_guidance_config]

        self.seg_guidance_config = seg_guidance_config
        self._seg_layer_hook_names = [f"SmoothedEnergyGuidance_{i}" for i in range(len(self.seg_guidance_config))]

    def prepare_models(self, denoiser: torch.nn.Module) -> None:
        if self._is_seg_enabled() and self.is_conditional and self._count_prepared > 1:
            for name, config in zip(self._seg_layer_hook_names, self.seg_guidance_config):
                _apply_smoothed_energy_guidance_hook(denoiser, config, self.seg_blur_sigma, name=name)

    def cleanup_models(self, denoiser: torch.nn.Module):
        if self._is_seg_enabled() and self.is_conditional and self._count_prepared > 1:
            registry = HookRegistry.check_if_exists_or_initialize(denoiser)
            # Remove the hooks after inference
            for hook_name in self._seg_layer_hook_names:
                registry.remove_hook(hook_name, recurse=True)

YiYi Xu's avatar
YiYi Xu committed
157
    def prepare_inputs(self, data: Dict[str, Tuple[torch.Tensor, torch.Tensor]]) -> List["BlockState"]:
YiYi Xu's avatar
YiYi Xu committed
158
159
160
161
162
163
164
165
166
167
168
169
        if self.num_conditions == 1:
            tuple_indices = [0]
            input_predictions = ["pred_cond"]
        elif self.num_conditions == 2:
            tuple_indices = [0, 1]
            input_predictions = (
                ["pred_cond", "pred_uncond"] if self._is_cfg_enabled() else ["pred_cond", "pred_cond_seg"]
            )
        else:
            tuple_indices = [0, 1, 0]
            input_predictions = ["pred_cond", "pred_uncond", "pred_cond_seg"]
        data_batches = []
YiYi Xu's avatar
YiYi Xu committed
170
171
        for tuple_idx, input_prediction in zip(tuple_indices, input_predictions):
            data_batch = self._prepare_batch(data, tuple_idx, input_prediction)
YiYi Xu's avatar
YiYi Xu committed
172
173
174
            data_batches.append(data_batch)
        return data_batches

YiYi Xu's avatar
YiYi Xu committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    def prepare_inputs_from_block_state(
        self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
    ) -> List["BlockState"]:
        if self.num_conditions == 1:
            tuple_indices = [0]
            input_predictions = ["pred_cond"]
        elif self.num_conditions == 2:
            tuple_indices = [0, 1]
            input_predictions = (
                ["pred_cond", "pred_uncond"] if self._is_cfg_enabled() else ["pred_cond", "pred_cond_seg"]
            )
        else:
            tuple_indices = [0, 1, 0]
            input_predictions = ["pred_cond", "pred_uncond", "pred_cond_seg"]
        data_batches = []
        for tuple_idx, input_prediction in zip(tuple_indices, input_predictions):
            data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
            data_batches.append(data_batch)
        return data_batches

YiYi Xu's avatar
YiYi Xu committed
195
196
197
198
199
    def forward(
        self,
        pred_cond: torch.Tensor,
        pred_uncond: Optional[torch.Tensor] = None,
        pred_cond_seg: Optional[torch.Tensor] = None,
200
    ) -> GuiderOutput:
YiYi Xu's avatar
YiYi Xu committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        pred = None

        if not self._is_cfg_enabled() and not self._is_seg_enabled():
            pred = pred_cond
        elif not self._is_cfg_enabled():
            shift = pred_cond - pred_cond_seg
            pred = pred_cond if self.use_original_formulation else pred_cond_seg
            pred = pred + self.seg_guidance_scale * shift
        elif not self._is_seg_enabled():
            shift = pred_cond - pred_uncond
            pred = pred_cond if self.use_original_formulation else pred_uncond
            pred = pred + self.guidance_scale * shift
        else:
            shift = pred_cond - pred_uncond
            shift_seg = pred_cond - pred_cond_seg
            pred = pred_cond if self.use_original_formulation else pred_uncond
            pred = pred + self.guidance_scale * shift + self.seg_guidance_scale * shift_seg

        if self.guidance_rescale > 0.0:
            pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)

222
        return GuiderOutput(pred=pred, pred_cond=pred_cond, pred_uncond=pred_uncond)
YiYi Xu's avatar
YiYi Xu committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    @property
    def is_conditional(self) -> bool:
        return self._count_prepared == 1 or self._count_prepared == 3

    @property
    def num_conditions(self) -> int:
        num_conditions = 1
        if self._is_cfg_enabled():
            num_conditions += 1
        if self._is_seg_enabled():
            num_conditions += 1
        return num_conditions

    def _is_cfg_enabled(self) -> bool:
        if not self._enabled:
            return False

        is_within_range = True
        if self._num_inference_steps is not None:
            skip_start_step = int(self._start * self._num_inference_steps)
            skip_stop_step = int(self._stop * self._num_inference_steps)
            is_within_range = skip_start_step <= self._step < skip_stop_step

        is_close = False
        if self.use_original_formulation:
            is_close = math.isclose(self.guidance_scale, 0.0)
        else:
            is_close = math.isclose(self.guidance_scale, 1.0)

        return is_within_range and not is_close

    def _is_seg_enabled(self) -> bool:
        if not self._enabled:
            return False

        is_within_range = True
        if self._num_inference_steps is not None:
            skip_start_step = int(self.seg_guidance_start * self._num_inference_steps)
            skip_stop_step = int(self.seg_guidance_stop * self._num_inference_steps)
            is_within_range = skip_start_step < self._step < skip_stop_step

        is_zero = math.isclose(self.seg_guidance_scale, 0.0)

        return is_within_range and not is_zero