unet_kandinsky3.py 20.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
19
20
21
22
23
from dataclasses import dataclass
from typing import Dict, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging
24
25
from .attention_processor import Attention, AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from .modeling_utils import ModelMixin


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class Kandinsky3UNetOutput(BaseOutput):
    sample: torch.FloatTensor = None


class Kandinsky3EncoderProj(nn.Module):
    def __init__(self, encoder_hid_dim, cross_attention_dim):
        super().__init__()
        self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False)
        self.projection_norm = nn.LayerNorm(cross_attention_dim)

    def forward(self, x):
        x = self.projection_linear(x)
        x = self.projection_norm(x)
        return x


class Kandinsky3UNet(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        in_channels: int = 4,
        time_embedding_dim: int = 1536,
        groups: int = 32,
        attention_head_dim: int = 64,
        layers_per_block: Union[int, Tuple[int]] = 3,
        block_out_channels: Tuple[int] = (384, 768, 1536, 3072),
        cross_attention_dim: Union[int, Tuple[int]] = 4096,
        encoder_hid_dim: int = 4096,
    ):
        super().__init__()

        # TOOD(Yiyi): Give better name and put into config for the following 4 parameters
        expansion_ratio = 4
        compression_ratio = 2
        add_cross_attention = (False, True, True, True)
        add_self_attention = (False, True, True, True)

        out_channels = in_channels
        init_channels = block_out_channels[0] // 2
72
        self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

        self.time_embedding = TimestepEmbedding(
            init_channels,
            time_embedding_dim,
        )

        self.add_time_condition = Kandinsky3AttentionPooling(
            time_embedding_dim, cross_attention_dim, attention_head_dim
        )

        self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1)

        self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim)

        hidden_dims = [init_channels] + list(block_out_channels)
        in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
89
        text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention]
90
91
92
93
94
95
96
97
98
99
100
        num_blocks = len(block_out_channels) * [layers_per_block]
        layer_params = [num_blocks, text_dims, add_self_attention]
        rev_layer_params = map(reversed, layer_params)

        cat_dims = []
        self.num_levels = len(in_out_dims)
        self.down_blocks = nn.ModuleList([])
        for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(
            zip(in_out_dims, *layer_params)
        ):
            down_sample = level != (self.num_levels - 1)
101
            cat_dims.append(out_dim if level != (self.num_levels - 1) else 0)
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
            self.down_blocks.append(
                Kandinsky3DownSampleBlock(
                    in_dim,
                    out_dim,
                    time_embedding_dim,
                    text_dim,
                    res_block_num,
                    groups,
                    attention_head_dim,
                    expansion_ratio,
                    compression_ratio,
                    down_sample,
                    self_attention,
                )
            )

        self.up_blocks = nn.ModuleList([])
        for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(
            zip(reversed(in_out_dims), *rev_layer_params)
        ):
            up_sample = level != 0
            self.up_blocks.append(
                Kandinsky3UpSampleBlock(
                    in_dim,
                    cat_dims.pop(),
                    out_dim,
                    time_embedding_dim,
                    text_dim,
                    res_block_num,
                    groups,
                    attention_head_dim,
                    expansion_ratio,
                    compression_ratio,
                    up_sample,
                    self_attention,
                )
            )

        self.conv_norm_out = nn.GroupNorm(groups, init_channels)
        self.conv_act_out = nn.SiLU()
        self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
206
        self.set_attn_processor(AttnProcessor())
207
208
209
210
211
212

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True):
213
214
215
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
216
217
218
219
220
221
222
223
224

        if not torch.is_tensor(timestep):
            dtype = torch.float32 if isinstance(timestep, float) else torch.int32
            timestep = torch.tensor([timestep], dtype=dtype, device=sample.device)
        elif len(timestep.shape) == 0:
            timestep = timestep[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timestep = timestep.expand(sample.shape[0])
225
        time_embed_input = self.time_proj(timestep).to(sample.dtype)
226
227
        time_embed = self.time_embedding(time_embed_input)

228
        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
229

230
231
        if encoder_hidden_states is not None:
            time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask)
232
233

        hidden_states = []
234
        sample = self.conv_in(sample)
235
        for level, down_sample in enumerate(self.down_blocks):
236
            sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
237
            if level != self.num_levels - 1:
238
                hidden_states.append(sample)
239
240
241

        for level, up_sample in enumerate(self.up_blocks):
            if level != 0:
242
243
                sample = torch.cat([sample, hidden_states.pop()], dim=1)
            sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask)
244

245
246
247
        sample = self.conv_norm_out(sample)
        sample = self.conv_act_out(sample)
        sample = self.conv_out(sample)
248
249

        if not return_dict:
250
251
            return (sample,)
        return Kandinsky3UNetOutput(sample=sample)
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270


class Kandinsky3UpSampleBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        cat_dim,
        out_channels,
        time_embed_dim,
        context_dim=None,
        num_blocks=3,
        groups=32,
        head_dim=64,
        expansion_ratio=4,
        compression_ratio=2,
        up_sample=True,
        self_attention=True,
    ):
        super().__init__()
271
        up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1)
272
273
274
275
276
277
278
279
280
281
282
283
        hidden_channels = (
            [(in_channels + cat_dim, in_channels)]
            + [(in_channels, in_channels)] * (num_blocks - 2)
            + [(in_channels, out_channels)]
        )
        attentions = []
        resnets_in = []
        resnets_out = []

        self.self_attention = self_attention
        self.context_dim = context_dim

284
285
286
        if self_attention:
            attentions.append(
                Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
287
            )
288
289
        else:
            attentions.append(nn.Identity())
290
291
292
293
294

        for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
            resnets_in.append(
                Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution)
            )
295
296
297
298
299
300

            if context_dim is not None:
                attentions.append(
                    Kandinsky3AttentionBlock(
                        in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
                    )
301
                )
302
303
304
            else:
                attentions.append(nn.Identity())

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
            resnets_out.append(
                Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets_in = nn.ModuleList(resnets_in)
        self.resnets_out = nn.ModuleList(resnets_out)

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
            x = resnet_in(x, time_embed)
            if self.context_dim is not None:
                x = attention(x, time_embed, context, context_mask, image_mask)
            x = resnet_out(x, time_embed)

        if self.self_attention:
            x = self.attentions[0](x, time_embed, image_mask=image_mask)
        return x


class Kandinsky3DownSampleBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        time_embed_dim,
        context_dim=None,
        num_blocks=3,
        groups=32,
        head_dim=64,
        expansion_ratio=4,
        compression_ratio=2,
        down_sample=True,
        self_attention=True,
    ):
        super().__init__()
        attentions = []
        resnets_in = []
        resnets_out = []

        self.self_attention = self_attention
        self.context_dim = context_dim

348
349
350
        if self_attention:
            attentions.append(
                Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio)
351
            )
352
353
        else:
            attentions.append(nn.Identity())
354

355
        up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]]
356
357
358
359
360
        hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
        for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions):
            resnets_in.append(
                Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio)
            )
361
362
363
364
365
366

            if context_dim is not None:
                attentions.append(
                    Kandinsky3AttentionBlock(
                        out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio
                    )
367
                )
368
369
370
            else:
                attentions.append(nn.Identity())

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
            resnets_out.append(
                Kandinsky3ResNetBlock(
                    out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets_in = nn.ModuleList(resnets_in)
        self.resnets_out = nn.ModuleList(resnets_out)

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        if self.self_attention:
            x = self.attentions[0](x, time_embed, image_mask=image_mask)

        for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out):
            x = resnet_in(x, time_embed)
            if self.context_dim is not None:
                x = attention(x, time_embed, context, context_mask, image_mask)
            x = resnet_out(x, time_embed)
        return x


class Kandinsky3ConditionalGroupNorm(nn.Module):
    def __init__(self, groups, normalized_shape, context_dim):
        super().__init__()
        self.norm = nn.GroupNorm(groups, normalized_shape, affine=False)
        self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape))
        self.context_mlp[1].weight.data.zero_()
        self.context_mlp[1].bias.data.zero_()

    def forward(self, x, context):
        context = self.context_mlp(context)

        for _ in range(len(x.shape[2:])):
            context = context.unsqueeze(-1)

        scale, shift = context.chunk(2, dim=1)
        x = self.norm(x) * (scale + 1.0) + shift
        return x


class Kandinsky3Block(nn.Module):
    def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
        super().__init__()
        self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
        self.activation = nn.SiLU()
417
418
419
420
421
        if up_resolution is not None and up_resolution:
            self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
        else:
            self.up_sample = nn.Identity()

422
423
        padding = int(kernel_size > 1)
        self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
424
425
426
427
428

        if up_resolution is not None and not up_resolution:
            self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
        else:
            self.down_sample = nn.Identity()
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

    def forward(self, x, time_embed):
        x = self.group_norm(x, time_embed)
        x = self.activation(x)
        x = self.up_sample(x)
        x = self.projection(x)
        x = self.down_sample(x)
        return x


class Kandinsky3ResNetBlock(nn.Module):
    def __init__(
        self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None]
    ):
        super().__init__()
        kernel_sizes = [1, 3, 3, 1]
        hidden_channel = max(in_channels, out_channels) // compression_ratio
        hidden_channels = (
            [(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)]
        )
        self.resnet_blocks = nn.ModuleList(
            [
                Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution)
                for (in_channel, out_channel), kernel_size, up_resolution in zip(
                    hidden_channels, kernel_sizes, up_resolutions
                )
            ]
        )
457
458
459
460
        self.shortcut_up_sample = (
            nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2)
            if True in up_resolutions
            else nn.Identity()
461
        )
462
463
        self.shortcut_projection = (
            nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity()
464
        )
465
466
467
468
        self.shortcut_down_sample = (
            nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2)
            if False in up_resolutions
            else nn.Identity()
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        )

    def forward(self, x, time_embed):
        out = x
        for resnet_block in self.resnet_blocks:
            out = resnet_block(out, time_embed)

        x = self.shortcut_up_sample(x)
        x = self.shortcut_projection(x)
        x = self.shortcut_down_sample(x)
        x = x + out
        return x


class Kandinsky3AttentionPooling(nn.Module):
    def __init__(self, num_channels, context_dim, head_dim=64):
        super().__init__()
486
487
488
489
490
491
492
        self.attention = Attention(
            context_dim,
            context_dim,
            dim_head=head_dim,
            out_dim=num_channels,
            out_bias=False,
        )
493
494

    def forward(self, x, context, context_mask=None):
495
        context_mask = context_mask.to(dtype=context.dtype)
496
497
498
499
500
501
502
503
        context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
        return x + context.squeeze(1)


class Kandinsky3AttentionBlock(nn.Module):
    def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
        super().__init__()
        self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
504
505
506
507
508
509
510
        self.attention = Attention(
            num_channels,
            context_dim or num_channels,
            dim_head=head_dim,
            out_dim=num_channels,
            out_bias=False,
        )
511
512
513
514
515
516
517
518
519
520
521
522
523
524

        hidden_channels = expansion_ratio * num_channels
        self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
        self.feed_forward = nn.Sequential(
            nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False),
            nn.SiLU(),
            nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False),
        )

    def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None):
        height, width = x.shape[-2:]
        out = self.in_norm(x, time_embed)
        out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1)
        context = context if context is not None else out
525
526
        if context_mask is not None:
            context_mask = context_mask.to(dtype=context.dtype)
527

528
        out = self.attention(out, context, context_mask)
529
530
531
532
533
534
535
        out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width)
        x = x + out

        out = self.out_norm(x, time_embed)
        out = self.feed_forward(out)
        x = x + out
        return x