kandinsky.mdx 24.1 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Kandinsky

## Overview

YiYi Xu's avatar
YiYi Xu committed
14
Kandinsky inherits best practices from [DALL-E 2](https://huggingface.co/papers/2204.06125) and [Latent Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/latent_diffusion), while introducing some new ideas.
YiYi Xu's avatar
YiYi Xu committed
15
16
17

It uses [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for encoding images and text, and a diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach enhances the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.

YiYi Xu's avatar
YiYi Xu committed
18
The Kandinsky model is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov). The original codebase can be found [here](https://github.com/ai-forever/Kandinsky-2)
YiYi Xu's avatar
YiYi Xu committed
19
20
21
22


## Usage example

23
In the following, we will walk you through some examples of how to use the Kandinsky pipelines to create some visually aesthetic artwork.
YiYi Xu's avatar
YiYi Xu committed
24
25
26

### Text-to-Image Generation

27
28
29
30
For text-to-image generation, we need to use both [`KandinskyPriorPipeline`] and [`KandinskyPipeline`].
The first step is to encode text prompts with CLIP and then diffuse the CLIP text embeddings to CLIP image embeddings,
as first proposed in [DALL-E 2](https://cdn.openai.com/papers/dall-e-2.pdf).
Let's throw a fun prompt at Kandinsky to see what it comes up with.
YiYi Xu's avatar
YiYi Xu committed
31

32
```py
YiYi Xu's avatar
YiYi Xu committed
33
34
35
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
```

36
37
First, let's instantiate the prior pipeline and the text-to-image pipeline. Both 
pipelines are diffusion models.
YiYi Xu's avatar
YiYi Xu committed
38

39
40
41

```py
from diffusers import DiffusionPipeline
YiYi Xu's avatar
YiYi Xu committed
42
43
import torch

44
pipe_prior = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16)
YiYi Xu's avatar
YiYi Xu committed
45
46
pipe_prior.to("cuda")

47
48
49
t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.to("cuda")
```
YiYi Xu's avatar
YiYi Xu committed
50

YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
<Tip warning={true}>

By default, the text-to-image pipeline use [`DDIMScheduler`], you can change the scheduler to [`DDPMScheduler`]

```py
scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler")
t2i_pipe = DiffusionPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16
)
t2i_pipe.to("cuda")
```

</Tip>

65
66
67
68
69
Now we pass the prompt through the prior to generate image embeddings. The prior
returns both the image embeddings corresponding to the prompt and negative/unconditional image 
embeddings corresponding to an empty string.

```py
YiYi Xu's avatar
YiYi Xu committed
70
image_embeds, negative_image_embeds = pipe_prior(prompt, guidance_scale=1.0).to_tuple()
YiYi Xu's avatar
YiYi Xu committed
71
72
```

73
<Tip warning={true}>
YiYi Xu's avatar
YiYi Xu committed
74

75
76
77
The text-to-image pipeline expects both `image_embeds`, `negative_image_embeds` and the original 
`prompt` as the text-to-image pipeline uses another text encoder to better guide the second diffusion 
process of `t2i_pipe`.
YiYi Xu's avatar
YiYi Xu committed
78

79
80
81
By default, the prior returns unconditioned negative image embeddings corresponding to the negative prompt of `""`.
For better results, you can also pass a `negative_prompt` to the prior. This will increase the effective batch size
of the prior by a factor of 2.
YiYi Xu's avatar
YiYi Xu committed
82

83
84
85
```py
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"
YiYi Xu's avatar
YiYi Xu committed
86

YiYi Xu's avatar
YiYi Xu committed
87
image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt, guidance_scale=1.0).to_tuple()
88
```
YiYi Xu's avatar
YiYi Xu committed
89

90
</Tip>
YiYi Xu's avatar
YiYi Xu committed
91
92


93
94
95
Next, we can pass the embeddings as well as the prompt to the text-to-image pipeline. Remember that 
in case you are using a customized negative prompt, that you should pass this one also to the text-to-image pipelines
with `negative_prompt=negative_prompt`:
YiYi Xu's avatar
YiYi Xu committed
96

97
```py
YiYi Xu's avatar
YiYi Xu committed
98
99
100
image = t2i_pipe(
    prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768
).images[0]
101
image.save("cheeseburger_monster.png")
YiYi Xu's avatar
YiYi Xu committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
```

One cheeseburger monster coming up! Enjoy! 

![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/cheeseburger.png)

The Kandinsky model works extremely well with creative prompts. Here is some of the amazing art that can be created using the exact same process but with different prompts.

```python
prompt = "bird eye view shot of a full body woman with cyan light orange magenta makeup, digital art, long braided hair her face separated by makeup in the style of yin Yang surrealism, symmetrical face, real image, contrasting tone, pastel gradient background"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/hair.png)

```python
prompt = "A car exploding into colorful dust"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/dusts.png)

```python
prompt = "editorial photography of an organic, almost liquid smoke style armchair"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/smokechair.png)

```python
prompt = "birds eye view of a quilted paper style alien planet landscape, vibrant colours, Cinematic lighting"
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/alienplanet.png)


YiYi Xu's avatar
YiYi Xu committed
131

YiYi Xu's avatar
YiYi Xu committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
### Text Guided Image-to-Image Generation

The same Kandinsky model weights can be used for text-guided image-to-image translation. In this case, just make sure to load the weights using the [`KandinskyImg2ImgPipeline`] pipeline.

**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
without loading them twice by making use of the [`~DiffusionPipeline.components`] function as explained [here](#converting-between-different-pipelines).

Let's download an image.

```python
from PIL import Image
import requests
from io import BytesIO

# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image = original_image.resize((768, 512))
```

![img](https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg)

```python
import torch
from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline

# create prior
pipe_prior = KandinskyPriorPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")

# create img2img pipeline
pipe = KandinskyImg2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.to("cuda")

prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"

YiYi Xu's avatar
YiYi Xu committed
172
image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt).to_tuple()
YiYi Xu's avatar
YiYi Xu committed
173
174
175
176

out = pipe(
    prompt,
    image=original_image,
177
178
    image_embeds=image_embeds,
    negative_image_embeds=negative_image_embeds,
YiYi Xu's avatar
YiYi Xu committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    height=768,
    width=768,
    strength=0.3,
)

out.images[0].save("fantasy_land.png")
```

![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/img2img_fantasyland.png)


### Text Guided Inpainting Generation

You can use [`KandinskyInpaintPipeline`] to edit images. In this example, we will add a hat to the portrait of a cat.

194
```py
YiYi Xu's avatar
YiYi Xu committed
195
196
197
198
199
200
201
202
203
204
205
from diffusers import KandinskyInpaintPipeline, KandinskyPriorPipeline
from diffusers.utils import load_image
import torch
import numpy as np

pipe_prior = KandinskyPriorPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")

prompt = "a hat"
206
prior_output = pipe_prior(prompt)
YiYi Xu's avatar
YiYi Xu committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

pipe = KandinskyInpaintPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16)
pipe.to("cuda")

init_image = load_image(
    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)

mask = np.ones((768, 768), dtype=np.float32)
# Let's mask out an area above the cat's head
mask[:250, 250:-250] = 0

out = pipe(
    prompt,
    image=init_image,
    mask_image=mask,
223
    **prior_output,
YiYi Xu's avatar
YiYi Xu committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    height=768,
    width=768,
    num_inference_steps=150,
)

image = out.images[0]
image.save("cat_with_hat.png")
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/inpaint_cat_hat.png)

### Interpolate 

The [`KandinskyPriorPipeline`] also comes with a cool utility function that will allow you to interpolate the latent space of different images and texts super easily. Here is an example of how you can create an Impressionist-style portrait for your pet based on "The Starry Night". 

Note that you can interpolate between texts and images - in the below example, we passed a text prompt "a cat" and two images to the `interplate` function, along with a `weights` variable containing the corresponding weights for each condition we interplate. 

```python
from diffusers import KandinskyPriorPipeline, KandinskyPipeline
from diffusers.utils import load_image
import PIL

import torch

pipe_prior = KandinskyPriorPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")

img1 = load_image(
    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)

img2 = load_image(
    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/starry_night.jpeg"
)

# add all the conditions we want to interpolate, can be either text or image
images_texts = ["a cat", img1, img2]
262

YiYi Xu's avatar
YiYi Xu committed
263
264
# specify the weights for each condition in images_texts
weights = [0.3, 0.3, 0.4]
265
266
267
268

# We can leave the prompt empty
prompt = ""
prior_out = pipe_prior.interpolate(images_texts, weights)
YiYi Xu's avatar
YiYi Xu committed
269
270
271
272

pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.to("cuda")

273
image = pipe(prompt, **prior_out, height=768, width=768).images[0]
YiYi Xu's avatar
YiYi Xu committed
274
275
276
277
278
279

image.save("starry_cat.png")
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/starry_cat.png)


YiYi Xu's avatar
YiYi Xu committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
### Text-to-Image Generation with ControlNet Conditioning

In the following, we give a simple example of how to use [`KandinskyV22ControlnetPipeline`] to add control to the text-to-image generation with a depth image.

First, let's take an image and extract its depth map.

```python
from diffusers.utils import load_image

img = load_image(
    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat.png"
).resize((768, 768))
```
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/cat.png)

We can use the `depth-estimation` pipeline from transformers to process the image and retrieve its depth map.

```python
import torch
import numpy as np

from transformers import pipeline
from diffusers.utils import load_image


def make_hint(image, depth_estimator):
    image = depth_estimator(image)["depth"]
    image = np.array(image)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    detected_map = torch.from_numpy(image).float() / 255.0
    hint = detected_map.permute(2, 0, 1)
    return hint


depth_estimator = pipeline("depth-estimation")
hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")
```
Now, we load the prior pipeline and the text-to-image controlnet pipeline

```python
from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline

pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
)
pipe_prior = pipe_prior.to("cuda")

pipe = KandinskyV22ControlnetPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
```

We pass the prompt and negative prompt through the prior to generate image embeddings

```python
prompt = "A robot, 4k photo"

negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"

generator = torch.Generator(device="cuda").manual_seed(43)
image_emb, zero_image_emb = pipe_prior(
    prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
).to_tuple()
```

Now we can pass the image embeddings and the depth image we extracted to the controlnet pipeline. With Kandinsky 2.2, only prior pipelines accept `prompt` input. You do not need to pass the prompt to the controlnet pipeline.

```python
images = pipe(
    image_embeds=image_emb,
    negative_image_embeds=zero_image_emb,
    hint=hint,
    num_inference_steps=50,
    generator=generator,
    height=768,
    width=768,
).images

images[0].save("robot_cat.png")
```

The output image looks as follow:
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/robot_cat_text2img.png)

### Image-to-Image Generation with ControlNet Conditioning

Kandinsky 2.2 also includes a [`KandinskyV22ControlnetImg2ImgPipeline`] that will allow you to add control to the image generation process with both the image and its depth map. This pipeline works really well with [`KandinskyV22PriorEmb2EmbPipeline`], which generates image embeddings based on both a text prompt and an image. 

For our robot cat example, we will pass the prompt and cat image together to the prior pipeline to generate an image embedding. We will then use that image embedding and the depth map of the cat to further control the image generation process. 

We can use the same cat image and its depth map from the last example.

```python
import torch
import numpy as np

from diffusers import KandinskyV22PriorEmb2EmbPipeline, KandinskyV22ControlnetImg2ImgPipeline
from diffusers.utils import load_image
from transformers import pipeline

img = load_image(
    "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/cat.png"
).resize((768, 768))


def make_hint(image, depth_estimator):
    image = depth_estimator(image)["depth"]
    image = np.array(image)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    detected_map = torch.from_numpy(image).float() / 255.0
    hint = detected_map.permute(2, 0, 1)
    return hint


depth_estimator = pipeline("depth-estimation")
hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")

pipe_prior = KandinskyV22PriorEmb2EmbPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
)
pipe_prior = pipe_prior.to("cuda")

pipe = KandinskyV22ControlnetImg2ImgPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16
)
pipe = pipe.to("cuda")

prompt = "A robot, 4k photo"
negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"

generator = torch.Generator(device="cuda").manual_seed(43)

# run prior pipeline

img_emb = pipe_prior(prompt=prompt, image=img, strength=0.85, generator=generator)
negative_emb = pipe_prior(prompt=negative_prior_prompt, image=img, strength=1, generator=generator)

# run controlnet img2img pipeline
images = pipe(
    image=img,
    strength=0.5,
    image_embeds=img_emb.image_embeds,
    negative_image_embeds=negative_emb.image_embeds,
    hint=hint,
    num_inference_steps=50,
    generator=generator,
    height=768,
    width=768,
).images

images[0].save("robot_cat.png")
```

Here is the output. Compared with the output from our text-to-image controlnet example, it kept a lot more cat facial details from the original image and worked into the robot style we asked for.

![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/robot_cat.png)

## Kandinsky 2.2

The Kandinsky 2.2 release includes robust new text-to-image models that support text-to-image generation, image-to-image generation, image interpolation, and text-guided image inpainting. The general workflow to perform these tasks using Kandinsky 2.2 is the same as in Kandinsky 2.1. First, you will need to use a prior pipeline to generate image embeddings based on your text prompt, and then use one of the image decoding pipelines to generate the output image. The only difference is that in Kandinsky 2.2, all of the decoding pipelines no longer accept the `prompt` input, and the image generation process is conditioned with only `image_embeds` and `negative_image_embeds`.

Let's look at an example of how to perform text-to-image generation using Kandinsky 2.2.

First, let's create the prior pipeline and text-to-image pipeline with Kandinsky 2.2 checkpoints.

```python
from diffusers import DiffusionPipeline
import torch

pipe_prior = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16)
pipe_prior.to("cuda")

t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
t2i_pipe.to("cuda")
```

You can then use `pipe_prior` to generate image embeddings.

```python
prompt = "portrait of a women, blue eyes, cinematic"
negative_prompt = "low quality, bad quality"

image_embeds, negative_image_embeds = pipe_prior(prompt, guidance_scale=1.0).to_tuple()
```

Now you can pass these embeddings to the text-to-image pipeline. When using Kandinsky 2.2 you don't need to pass the `prompt` (but you do with the previous version, Kandinsky 2.1).

```
image = t2i_pipe(image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768).images[
    0
]
image.save("portrait.png")
```
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinskyv22/%20blue%20eyes.png)

We used the text-to-image pipeline as an example, but the same process applies to all decoding pipelines in Kandinsky 2.2. For more information, please refer to our API section for each pipeline.


481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
## Optimization

Running Kandinsky in inference requires running both a first prior pipeline: [`KandinskyPriorPipeline`]
and a second image decoding pipeline which is one of [`KandinskyPipeline`], [`KandinskyImg2ImgPipeline`], or [`KandinskyInpaintPipeline`].

The bulk of the computation time will always be the second image decoding pipeline, so when looking 
into optimizing the model, one should look into the second image decoding pipeline.

When running with PyTorch < 2.0, we strongly recommend making use of [`xformers`](https://github.com/facebookresearch/xformers)
to speed-up the optimization. This can be done by simply running:

```py
from diffusers import DiffusionPipeline
import torch

t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.enable_xformers_memory_efficient_attention()
```

When running on PyTorch >= 2.0, PyTorch's SDPA attention will automatically be used. For more information on 
PyTorch's SDPA, feel free to have a look at [this blog post](https://pytorch.org/blog/accelerated-diffusers-pt-20/).

To have explicit control , you can also manually set the pipeline to use PyTorch's 2.0 efficient attention:

```py
from diffusers.models.attention_processor import AttnAddedKVProcessor2_0

t2i_pipe.unet.set_attn_processor(AttnAddedKVProcessor2_0())
```

The slowest and most memory intense attention processor is the default `AttnAddedKVProcessor` processor.
We do **not** recommend using it except for testing purposes or cases where very high determistic behaviour is desired. 
You can set it with:

```py
from diffusers.models.attention_processor import AttnAddedKVProcessor

t2i_pipe.unet.set_attn_processor(AttnAddedKVProcessor())
```

With PyTorch >= 2.0, you can also use Kandinsky with `torch.compile` which depending 
on your hardware can signficantly speed-up your inference time once the model is compiled.
To use Kandinsksy with `torch.compile`, you can do:

```py
t2i_pipe.unet.to(memory_format=torch.channels_last)
t2i_pipe.unet = torch.compile(t2i_pipe.unet, mode="reduce-overhead", fullgraph=True)
```

After compilation you should see a very fast inference time. For more information,
feel free to have a look at [Our PyTorch 2.0 benchmark](https://huggingface.co/docs/diffusers/main/en/optimization/torch2.0).

YiYi Xu's avatar
YiYi Xu committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
## Available Pipelines:

| Pipeline | Tasks |
|---|---|
| [pipeline_kandinsky2_2.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py) | *Text-to-Image Generation* |
| [pipeline_kandinsky.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky.py) | *Text-to-Image Generation* |
| [pipeline_kandinsky2_2_inpaint.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpaint.py) | *Image-Guided Image Generation* |
| [pipeline_kandinsky_inpaint.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py) | *Image-Guided Image Generation* |
| [pipeline_kandinsky2_2_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py) | *Image-Guided Image Generation* |
| [pipeline_kandinsky_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py) | *Image-Guided Image Generation* |
| [pipeline_kandinsky2_2_controlnet.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py) | *Image-Guided Image Generation* |
| [pipeline_kandinsky2_2_controlnet_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py) | *Image-Guided Image Generation* |


### KandinskyV22Pipeline
548

YiYi Xu's avatar
YiYi Xu committed
549
550
551
552
553
[[autodoc]] KandinskyV22Pipeline
	- all
	- __call__

### KandinskyV22ControlnetPipeline
554

YiYi Xu's avatar
YiYi Xu committed
555
556
557
558
559
560
561
562
563
[[autodoc]] KandinskyV22ControlnetPipeline
	- all
	- __call__

### KandinskyV22ControlnetImg2ImgPipeline

[[autodoc]] KandinskyV22ControlnetImg2ImgPipeline
	- all
	- __call__
564

YiYi Xu's avatar
YiYi Xu committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
### KandinskyV22Img2ImgPipeline

[[autodoc]] KandinskyV22Img2ImgPipeline
	- all
	- __call__

### KandinskyV22InpaintPipeline

[[autodoc]] KandinskyV22InpaintPipeline
	- all
	- __call__

### KandinskyV22PriorPipeline

[[autodoc]] ## KandinskyV22PriorPipeline
	- all
	- __call__
	- interpolate

### KandinskyV22PriorEmb2EmbPipeline

[[autodoc]] KandinskyV22PriorEmb2EmbPipeline
	- all
	- __call__
	- interpolate
590

YiYi Xu's avatar
YiYi Xu committed
591
### KandinskyPriorPipeline
YiYi Xu's avatar
YiYi Xu committed
592
593
594
595
596
597

[[autodoc]] KandinskyPriorPipeline
	- all
	- __call__
	- interpolate
	
YiYi Xu's avatar
YiYi Xu committed
598
### KandinskyPipeline
YiYi Xu's avatar
YiYi Xu committed
599
600
601
602
603

[[autodoc]] KandinskyPipeline
	- all
	- __call__

YiYi Xu's avatar
YiYi Xu committed
604
### KandinskyImg2ImgPipeline
YiYi Xu's avatar
YiYi Xu committed
605
606
607
608
609

[[autodoc]] KandinskyImg2ImgPipeline
	- all
	- __call__

YiYi Xu's avatar
YiYi Xu committed
610
### KandinskyInpaintPipeline
611
612
613
614

[[autodoc]] KandinskyInpaintPipeline
	- all
	- __call__