"vscode:/vscode.git/clone" did not exist on "0c18f34346b2e382095303b7a9f433136bc194ab"
test_modular_pipelines_common.py 13.7 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
import gc
import tempfile
import unittest
from typing import Callable, Union

import numpy as np
import torch

import diffusers
from diffusers import ComponentsManager, ModularPipeline, ModularPipelineBlocks
from diffusers.utils import logging
12
13

from ..testing_utils import (
YiYi Xu's avatar
YiYi Xu committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    backend_empty_cache,
    numpy_cosine_similarity_distance,
    require_accelerator,
    require_torch,
    torch_device,
)


def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


@require_torch
class ModularPipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each modular pipeline,
    including:
    - test_pipeline_call_signature: check if the pipeline's __call__ method has all required parameters
    - test_inference_batch_consistent: check if the pipeline's __call__ method can handle batch inputs
    - test_inference_batch_single_identical: check if the pipeline's __call__ method can handle single input
    - test_float16_inference: check if the pipeline's __call__ method can handle float16 inputs
    - test_to_device: check if the pipeline's __call__ method can handle different devices
    """

    # Canonical parameters that are passed to `__call__` regardless
    # of the type of pipeline. They are always optional and have common
    # sense default values.
    optional_params = frozenset(
        [
            "num_inference_steps",
            "num_images_per_prompt",
            "latents",
            "output_type",
        ]
    )
    # this is modular specific: generator needs to be a intermediate input because it's mutable
    intermediate_params = frozenset(
        [
            "generator",
        ]
    )

    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

    @property
    def pipeline_class(self) -> Union[Callable, ModularPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    @property
    def repo(self) -> str:
        raise NotImplementedError(
            "You need to set the attribute `repo` in the child test class. See existing pipeline tests for reference."
        )

    @property
    def pipeline_blocks_class(self) -> Union[Callable, ModularPipelineBlocks]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_blocks_class = ClassNameOfPipelineBlocks` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_pipeline(self):
        raise NotImplementedError(
            "You need to implement `get_pipeline(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    @property
    def params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `params` in the child test class. "
            "`params` are checked for if all values are present in `__call__`'s signature."
            " You can set `params` using one of the common set of parameters defined in `pipeline_params.py`"
            " e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to  "
            "image pipelines, including prompts and prompt embedding overrides."
            "If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
            "do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
            "with non-configurable height and width arguments should set the attribute as "
            "`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
            "See existing pipeline tests for reference."
        )

    @property
    def batch_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `batch_params` in the child test class. "
            "`batch_params` are the parameters required to be batched when passed to the pipeline's "
            "`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
            "`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
            "set of batch arguments has minor changes from one of the common sets of batch arguments, "
            "do not make modifications to the existing common sets of batch arguments. I.e. a text to "
            "image pipeline `negative_prompt` is not batched should set the attribute as "
            "`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
            "See existing pipeline tests for reference."
        )

    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        torch.compiler.reset()
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        torch.compiler.reset()
        gc.collect()
        backend_empty_cache(torch_device)

    def test_pipeline_call_signature(self):
        pipe = self.get_pipeline()
        input_parameters = pipe.blocks.input_names
        optional_parameters = pipe.default_call_parameters

        def _check_for_parameters(parameters, expected_parameters, param_type):
            remaining_parameters = {param for param in parameters if param not in expected_parameters}
            assert len(remaining_parameters) == 0, (
                f"Required {param_type} parameters not present: {remaining_parameters}"
            )

        _check_for_parameters(self.params, input_parameters, "input")
        _check_for_parameters(self.optional_params, optional_parameters, "optional")

    def test_inference_batch_consistent(self, batch_sizes=[2], batch_generator=True):
        pipe = self.get_pipeline()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["generator"] = self.get_generator(0)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # prepare batched inputs
        batched_inputs = []
        for batch_size in batch_sizes:
            batched_input = {}
            batched_input.update(inputs)

            for name in self.batch_params:
                if name not in inputs:
                    continue

                value = inputs[name]
                batched_input[name] = batch_size * [value]

            if batch_generator and "generator" in inputs:
                batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)]

            if "batch_size" in inputs:
                batched_input["batch_size"] = batch_size

            batched_inputs.append(batched_input)

        logger.setLevel(level=diffusers.logging.WARNING)
        for batch_size, batched_input in zip(batch_sizes, batched_inputs):
            output = pipe(**batched_input, output="images")
            assert len(output) == batch_size, "Output is different from expected batch size"

    def test_inference_batch_single_identical(
        self,
        batch_size=2,
        expected_max_diff=1e-4,
    ):
        pipe = self.get_pipeline()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)

        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = self.get_generator(0)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batched_inputs.update(inputs)

        for name in self.batch_params:
            if name not in inputs:
                continue

            value = inputs[name]
            batched_inputs[name] = batch_size * [value]

        if "generator" in inputs:
            batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]

        if "batch_size" in inputs:
            batched_inputs["batch_size"] = batch_size

        output = pipe(**inputs, output="images")
        output_batch = pipe(**batched_inputs, output="images")

        assert output_batch.shape[0] == batch_size

        max_diff = np.abs(to_np(output_batch[0]) - to_np(output[0])).max()
        assert max_diff < expected_max_diff, "Batch inference results different from single inference results"

    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
    def test_float16_inference(self, expected_max_diff=5e-2):
        pipe = self.get_pipeline()
        pipe.to(torch_device, torch.float32)
        pipe.set_progress_bar_config(disable=None)

        pipe_fp16 = self.get_pipeline()
        pipe_fp16.to(torch_device, torch.float16)
        pipe_fp16.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is used inside dummy inputs
        if "generator" in inputs:
            inputs["generator"] = self.get_generator(0)
        output = pipe(**inputs, output="images")

        fp16_inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is used inside dummy inputs
        if "generator" in fp16_inputs:
            fp16_inputs["generator"] = self.get_generator(0)
        output_fp16 = pipe_fp16(**fp16_inputs, output="images")

        if isinstance(output, torch.Tensor):
            output = output.cpu()
            output_fp16 = output_fp16.cpu()

        max_diff = numpy_cosine_similarity_distance(output.flatten(), output_fp16.flatten())
        assert max_diff < expected_max_diff, "FP16 inference is different from FP32 inference"

    @require_accelerator
    def test_to_device(self):
        pipe = self.get_pipeline()
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        assert all(device == "cpu" for device in model_devices), "All pipeline components are not on CPU"

        pipe.to(torch_device)
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        assert all(device == torch_device for device in model_devices), (
            "All pipeline components are not on accelerator device"
        )

    def test_inference_is_not_nan_cpu(self):
        pipe = self.get_pipeline()
        pipe.set_progress_bar_config(disable=None)
        pipe.to("cpu")

        output = pipe(**self.get_dummy_inputs("cpu"), output="images")
        assert np.isnan(to_np(output)).sum() == 0, "CPU Inference returns NaN"

    @require_accelerator
    def test_inference_is_not_nan(self):
        pipe = self.get_pipeline()
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        output = pipe(**self.get_dummy_inputs(torch_device), output="images")
        assert np.isnan(to_np(output)).sum() == 0, "Accelerator Inference returns NaN"

    def test_num_images_per_prompt(self):
        pipe = self.get_pipeline()

        if "num_images_per_prompt" not in pipe.blocks.input_names:
            return

        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        batch_sizes = [1, 2]
        num_images_per_prompts = [1, 2]

        for batch_size in batch_sizes:
            for num_images_per_prompt in num_images_per_prompts:
                inputs = self.get_dummy_inputs(torch_device)

                for key in inputs.keys():
                    if key in self.batch_params:
                        inputs[key] = batch_size * [inputs[key]]

                images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt, output="images")

                assert images.shape[0] == batch_size * num_images_per_prompt

    @require_accelerator
    def test_components_auto_cpu_offload_inference_consistent(self):
        base_pipe = self.get_pipeline().to(torch_device)

        cm = ComponentsManager()
        cm.enable_auto_cpu_offload(device=torch_device)
        offload_pipe = self.get_pipeline(components_manager=cm)

        image_slices = []
        for pipe in [base_pipe, offload_pipe]:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs, output="images")

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3

    def test_save_from_pretrained(self):
        pipes = []
        base_pipe = self.get_pipeline().to(torch_device)
        pipes.append(base_pipe)

        with tempfile.TemporaryDirectory() as tmpdirname:
            base_pipe.save_pretrained(tmpdirname)
            pipe = ModularPipeline.from_pretrained(tmpdirname).to(torch_device)
            pipe.load_default_components(torch_dtype=torch.float32)
            pipe.to(torch_device)

        pipes.append(pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs, output="images")

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3